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We present novel policy tools to manage epidemics. Rather than using prevalent population 
restrictions, these policy strategies are based on cyclical time restrictions. Key findings 
on the outcomes of such policy strategies include: a significant improvement of social 
welfare, substantially lessening the trade-offs between economic activity and health 
outcomes; optimally-derived timings of interventions are shown to suppress the disease, 
while maintaining reasonable economic activity; and outcomes are superior to the actual 
experience of New York State and Florida over the course of 2020.
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1. Introduction

The COVID19 pandemic has created a global health and economic crisis of a magnitude not experienced since the Great 
Influenza Pandemic of 1918-1919. After 33 months, about 630 million people have become infected, about 6.6 million 
people worldwide have died, and estimates of excess deaths are more than three times as high1; IMF (2022) reported a 
3.1% drop in world GDP in 2020, and a 4.5% drop in the advanced economies. The death toll in the U.S. is almost 1.1
million; the declines in U.S. GDP and consumer expenditures for 2020 have been −3.4% and −3.8%, respectively.

* Corresponding author at: The Eitan Berglas School of Economics, Tel Aviv University, Tel Aviv 69978, Israel.
E-mail addresses: yinon.baron@gmail.com (Y. Bar-On), tatian.baron@gmail.com (T. Baron), ofer.cornfeld@gmail.com (O. Cornfeld), yashiv@tauex.tau.ac.il, 

e.yashiv@lse.ac.uk (E. Yashiv).
URL: https://www.yashiv.sites.tau.ac.il/ (E. Yashiv).

1 See https://ourworldindata .org /covid -deaths.
https://doi.org/10.1016/j.red.2023.01.004
1094-2025/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.red.2023.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/red
http://crossmark.crossref.org/dialog/?doi=10.1016/j.red.2023.01.004&domain=pdf
mailto:yinon.baron@gmail.com
mailto:tatian.baron@gmail.com
mailto:ofer.cornfeld@gmail.com
mailto:yashiv@tauex.tau.ac.il
mailto:e.yashiv@lse.ac.uk
https://www.yashiv.sites.tau.ac.il/
https://ourworldindata.org/covid-deaths
https://doi.org/10.1016/j.red.2023.01.004


Y. Bar-On, T. Baron, O. Cornfeld et al. Review of Economic Dynamics 51 (2023) 292–321
We address the issue of policy responses to the pandemic, providing an analysis of new time-based tools to manage epi-
demics. These policy strategies were proposed in epidemiologically-grounded work by Karin et al. (2020). The contribution 
of our paper is the economic analysis of these new policy tools. The proposed policy consists of alternating periods of work 
and lockdown, at pre-defined frequencies, for the entire population. We present both normative and positive analyses. The 
former applies to future pandemics or epidemics while the latter evaluates policy against real world benchmarks in the U.S. 
using data.

The proposed policy tools are particularly relevant in light of the difficulties experienced by policymakers in finding a 
policy strategy that lessens the trade-offs involved. In theory, targeted population lockdowns could constitute “fine tuning” 
of lockdown measures, which would serve to lessen any economic cost. In practice, however, it turned out to be challenging 
to identify sub populations to be allowed unrestricted economic activity, while imposing restrictions on other population 
groups. Political and moral issues, as well as practical implementation issues, have come into play. The time-based public 
health management policy avoids these difficulties, taking time, rather than population, as the medium of restrictions.

Our model lies within a line of COVID19 research in Economics, which posits a planner problem. The planner formulates 
an optimal policy of Non-Pharmaceutical Interventions (NPIs), and in particular, lockdowns, subject to a model of disease 
dynamics, taking into account vaccine arrival. The planner trades off the costs of public health outcomes, such as breach 
of ICU capacity and death, with the economic costs of suppression policy, including declines in production. Prominent 
contributions in this line of literature include Acemoglu et al. (2021), Alvarez et al. (2021), Brotherhood et al. (2021), 
Brotherhood and Jerbashian (2020), Farboodi et al. (2021), and Jones et al. (2021). Our analysis pertains to new policy 
strategies, which were not considered in the literature.

We highlight five dimensions related to time:
(i) From the normative perspective, we analyze policy that relies on time restrictions. Such policy is an alternative to policy 

based on restrictions of sectors, age groups, regions, or other targeted population groups. The success of the policy hinges 
on two mechanisms that operate over time. In lockdown days, the disease is suppressed through exogenous government-
imposed restrictions. In work days, the disease is suppressed through the endogenous rational behavior of the population. 
This combination allows the effective reproduction number to be kept at around 1 on average. Notably, a full, prolonged 
lockdown is not needed to keep death rates low. All that is needed is to have the open periods short enough, backed up by 
rational precaution of the population, and followed by lockdown periods of reasonable length ahead of the next re-opening.

(ii) The epidemiological rationale for the proposed policy is, inter alia but not exclusively, based on the timescales of virus 
transmission. The idea is that for every 14 day period, there will be k days of work and 14 − k days of lockdown. This 
number, k, uses the timescales of the virus against itself, taking into account a latent period after exposure, whereby the 
infected person does not infect others. In other words, the epidemiological cost of open days is mitigated by the fact that 
individuals do not become infectious immediately. The epidemiological benefit of lockdown days is enhanced because the 
schedule locks down the economy when individuals are at their most infectious.

(iii) Using an optimizing social planner model, the control variables for this policy are the timing of the various mea-
sures–initial lockdown, the cyclical policy phase, and release. Hatchett et al. (2007) highlight the idea that imposing NPIs 
early in an epidemic can significantly reduce mortality. In the current paper, the exploration of timing issues, both start 
time and duration, are at the heart of the analysis.

(iv) This policy is compared to a prevalent policy path which sets lockdown and release as functions of disease prevalence, 
which is time-varying. Specifically, the latter uses trigger thresholds, such as the number of persons hospitalized in ICU in 
a given period of time, and gives rise to the pattern of recurrent lockdown and release observed in the U.S. and other 
countries since the start of COVID19.

(v) The proposed policy is subsequently compared to the actual experience of New York State (NYS) and Florida. The 
outcomes observed for NYS turn out to depend crucially on the timing of the policies undertaken; those for Florida reveal 
particular policy preferences.

We explicitly model the dynamic path for the reproduction parameter, reflecting both rational individual behavior and 
the effects of lockdown policy. Thus, we model the endogenous response by individuals, who adjust to the new environment 
and behave accordingly. Additionally, government interventions in the form of lockdowns induce behavioral change. These 
elements are included in a model whereby individuals maximize utility and a social planner maximizes a welfare function, 
which incorporates individual utility. We then take the model to the data and use the resulting estimates to calibrate the 
relevant parameters, which we subsequently use in simulations.

The social planner in our model uses a PDF in order to form ex-ante expectations of vaccine arrival time. This serves 
three key roles; first, it sets the horizon for the problem, acting as a rate of leaving the state of the pandemic. Second, it 
is an expression of the risk and uncertainty embodied in the planner problem. Third, relative to the interest rate, it plays 
the major quantitative role in discounting future streams. In our simulations vaccine arrival is realized after 540 days. Using 
these elements, our analysis quantifies outcomes in terms of social welfare. We simulate the optimal cyclical policies and 
examine their health and economic implications.

The cyclical policy is compared to four non-cyclical benchmarks: two polar cases, of no policy intervention (i.e., no 
lockdown) or full lockdown till vaccine arrival; a single time span lockdown policy, whereby the starting date and the 
duration are chosen optimally; and a theoretical path trying to mimic a real-world rationale, whereby the planner chooses 
thresholds for multiple lockdowns in terms of the critically ill. Subsequently, and additionally, we evaluate the time-based 
policy tools in relation to the actual experience of NYS and Florida in 2020.
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We plot the policy plans in terms of a policy possibilities frontier. These show the outcomes of optimal planner policies, 
using a two-dimensional graph of the death toll per 1 million people and the value of lost output, in annual GDP terms. 
Movement along the frontier occurs as the policy instrument in use changes, or as the weight assigned to fatalities in the 
planner objective function changes, or as the lethality of the disease changes.

Our analysis yields the following key findings.
First, the policy instruments, based on time restrictions, provide for significant improvement, substantially lessening the 

trade-offs involved relative to the four non-cyclical benchmarks. The latter are situated in points on the graph beyond the 
frontier.

Second, we quantify social welfare costs. These are given in utility terms and in Present Discounted Value (PDV) 
consumption terms. Using the consumption loss measure, comparing actual consumption to the pre-COVID steady state 
(formally defined below), the different cyclical strategies place these losses at 22% to 26%, the no intervention policy results 
in 36%, full lockdown in 29%, optimal lockdown duration in 27%, and the thresholds strategy in 25%. The underlying ratio-
nale for the improvement is that cyclical strategies allow the planner to achieve similar death tolls with fewer lockdowns, or 
to reduce the death toll dramatically without a significant damage to output. These results are due to the optimally-derived 
timings of intervention (for example, “front loading” interventions is beneficial in specific cases, which are spelled out) and 
the ability of the cyclical strategies to suppress the disease while maintaining a reasonable level of economic activity.

Third, using daily data from March 2020 to early 2021, optimal cyclical policies fare much better than actual experience in 
the states of New York and Florida. When deriving this result, we use estimated state-specific parameters in the simulations.

Importantly, the benefits of the time-based policy tools that we find are likely to be a lower bound of their true advan-
tage over policy strategies that have been implemented. This is so because, for tractability, we are not giving the planner 
full flexibility when applying the cyclical tools. Similarly, we do not quantify additional benefits, such as predictability of 
production, gains in non-COVID health matters, transparency, ease of communication, and fairness.

We note that the idea of a cyclical strategy, which is at the focal point of the normative analysis of our analysis, has 
been brought to the attention of policymakers (see Yashiv (2020), Alon and Yashiv (2020), and Alon et al., 2020) and has 
been considered or implemented by a host of firms and educational institutions in the U.S., in Europe, and in Latin America. 
Online Appendix A provides elaboration.

The paper proceeds as follows: Section 2 discusses the model, including the policies we propose, on which we further 
elaborate in online Appendix A. Section 3 presents the calibration and the solution methodology. Section 4 presents the 
results. Section 5 explores the underlying mechanism. Section 6 examines the relation between the model planner solution 
and actual outcomes in two U.S. states – NYS and Florida. Section 7 concludes. Online Appendices B and C provide further 
elaboration.

2. The model

We model an optimizing social planner who operates within a SEIR model of the epidemic and a model of the macroe-
conomy with optimizing agents responding to the epidemic. We elaborate on the novel policy strategies based on time 
restrictions.

2.1. The evolution of the epidemic

We analyze the evolution of the epidemic in two complementary blocks – infection transmission and clinical progression.

2.1.1. The infection transmission block
The infection transmission block is characterized by the SEIR-Erlang model, reflecting the epidemiological properties of 

COVID19. The model is essentially based on the seminal contribution of Kermack and McKendrick (1927). Its present form 
is discussed in Champredon et al. (2018). See Bar-On et al. (2021) for a more detailed analysis, where we explain the need 
for the two complementary model blocks. Before contacting the disease for the first time, a person is Susceptible (S). Once 
a person gets infected, disease progression is split into distinct compartments – Exposed (E), Infectious (I), and Resolved 
(R). We denote by βt the infections transmission rate, σ , the transition rate from E to I , and γ , the transition rate from 
I to R . An infected individual spends some time in each compartment before moving on to the next one. The person is 
infectious only when in the I compartment, but not when residing in the preceding E compartment. The time durations 
spent in the E and I compartments are known as the latent and infectious periods, respectively. Once people move to the 
Resolved stage, they no longer participate in disease transmission. With Poisson transition rates between compartments, the 
residence times in each of them are distributed exponentially, and thus have zero mode. Exponential distributions capture 
the mean but not the mode of the biologically accurate distributions of residence times, because in reality what most people 
spend in each stage is close to the mean of the distribution, rather than zero. Therefore, we split the E and I compartments 
into two sub-compartments and double the rate of transition. Now, the latent and infectious periods are the sum of the 
time spent in the E1 and E2 or I1 and I2 sub-compartments, respectively. Their distribution is the sum of exponentially 
distributed random variables, a special case of the Gamma distribution, known as the Erlang distribution. The means of 
Erlang distributions remain 1/σ and 1/γ , but the modes are now near the means, as they should be. In the remainder of 
the paper we shall refer to this model as the S E I R model, without noting the number of sub-compartments.
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Fig. 1. The Model.

Graphically, this block is presented in panel a of Fig. 1.
The following equations describe this block. Throughout, all stock variables are expressed as a fraction of the population.

Ṡt = −βt(I1t + I2t)St (1)

Ė1t = βt(I1t + I2t)St − 2σ E1t (2)

Ė2t = 2σ E1t − 2σ E2t (3)

İ1t = 2σ E2t − 2γ I1t (4)

İ2t = 2γ I1t − 2γ I2t (5)

Ṙt = 2γ I2t (6)

An important parameter is the reproduction number Rt , which is the average number of people infected by a person, 
and is given by:

Rt = βt

γ
(7)

We use Rt for the reproduction number at date t and denote the basic reproduction number by R0 at the initial stage, 
when S0 = 1. Beyond the initial t = 0, our formulation will allow for Rt to be affected by policy and by rational individual 
behavior, as elaborated below in sub-section 2.2. We shall also be discussing the effective reproduction number, defined as:

Re = StRt (8)

We model the transmission rate βt as a function of three arguments, using the following formulation:

βt = βW − βN

(
1 − Nt

N S S

)α

+ β� exp (−�t) (9)

The arguments are motivated as follows:
a. βW is the transmission rate when the economy is open, i.e., production and employment are not restricted.
b. βN parameterizes the scale of the decline in transmission as activity falls (decline in Nt

N S S , employment relative to its 
steady state), using a power function with parameter α.

c. β� exp (−�t) expresses the decline in transmission due to learning over time by individuals.
At time t = 0, when Nt

N S S = 1 we get:

β0 = β� + βW (10)

which is the transmission at the initial stage and corresponds to R0 = β0 .
γ
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After a period of time, which depends on the rate of decline �, individuals change their behavior, and when exp (−�t)
� βW we get that the transmission rate (and hence Rt) rises with employment:

βt = βW − βN

(
1 − Nt

N S S

)α

(11)

2.1.2. The clinical block
The clinical block describes the clinical progression of the disease and the progression of new cases through the health-

care system, depending on the development and severity of symptoms. We postulate the following. Once infected, a person 
enters an incubation period, a P state, during which there are no symptoms, lasting for 1/θP on average. Following it, a 
person either remains asymptomatic (O ) or develops symptoms (M). Denote the share of asymptomatic cases by η. The 
others (1 −η) develop symptoms, and with probability ξ are hospitalized (H). A given share π of patients become critically 
ill (denoted X), i.e., develop conditions requiring transition to ICU. Following the literature (see, for example, Kaplan et al. 
(2020) and Brotherhood et al. (2021)), we specify the death probability in this critical state X as:

δ(Xt) = δ1 + δ2 · I(Xt > X) · (Xt − X)

Xt
(12)

where X denotes ICU capacity and I is the indicator function. The reasoning is as follows. When there is no breach of ICU 
capacity, the death probability is given by δ1. Whenever there is an overflow, I(Xt > X) = 1, the death probability increases 
with the risk that a patient will not be provided ICU care when needed. The underlying assumption is that the allocation to 
ICU is random among all patients in need of it, so the risk to be left out of ICU (for a given patient) is given by (Xt−X)

Xt
. At 

the limit, the death probability δ(Xt � X) is given by δ1 + δ2.
At any stage, a person may recover (C ). The clinical block is represented graphically in panel b of Fig. 1.
The analytical description of the symptomatic branch is:

Ṗt = βt(I1t + I2t)St − θP Pt (13)

Ṁt = (1 − η)θP Pt − θM Mt (14)

Ḣt = ξ · θM Mt − θH Ht (15)

Ẋt = πθH Ht − θX Xt (16)

Ḋt = δ(Xt)θX Xt (17)

The parameters θP , θM , θH , and θX relate to the average time that passes between the stages of infection, symptoms onset, 
hospitalization, ICU admission, and death, respectively.

Note that a given person moves through the two blocks simultaneously. They relate to two timescales, the infectiousness 
profile and the clinical progression, which develop in parallel. Each of the blocks characterizes different properties of an 
infection case: one identifies whether a given person is infectious and the other identifies the severity of the disease 
(whether one needs hospitalization, for example). Thus, a person might be infectious (stage I of the infection transmission 
block) and at the same time still show no symptoms, i.e., be in stage P , the incubation period, of the clinical block. Similarly, 
a person may no longer be infectious (stage R of the infection transmission block) but still be hospitalized (stage H of the 
clinical block).

2.2. The economy

We first describe optimal individual decisions (2.2.1) and then elaborate on the aggregate outcomes (2.2.2).

2.2.1. Consumer-worker optimization
In each period, there are two groups of individuals in the economy: the majority who are active and a minority who are 

inactive because of health reasons.
Active workers. Active workers maximize a utility function, which includes standard utility from consumption and disutil-

ity from labor; there is no saving/investment. Additionally and importantly, they respond to the epidemic endogenously. The 
model is thus related to papers which tie macroeconomic dynamics to epidemiological dynamics, which posit that individ-
ual rational economic behavior has two-way connections with disease transmission.2 Notable COVID-related contributions 
include Atkeson (2021, 2022), Atkeson et al. (2021), Eichenbaum et al. (2021), Garibaldi et al. (2020), and Krueger et al. 
(2020). An elaborate analysis, emphasizing heterogeneous agents, is offered by Kaplan et al. (2020).

2 This issue was explored long before COVID19; prominent examples include Geoffard and Philipson (1996), Fenichel et al. (2011), and Fenichel (2013), 
Greenwood et al. (2019), and the surveys by Philipson (2000) and Verelst et al. (2016).
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Inactive workers. This group is comprised of the following pools (shares of the population): Dt , deceased; Xt , critically ill; 
Ht , hospitalized; and φMt , workers with COVID19 symptoms, who do not work because they are isolated. The individuals 
in these pools, apart from the deceased, get a fixed consumption transfer from the government. This formulation follows 
a modeling idea of Kaplan et al. (2020, see page 28); it assumes that the government has access to a storage technology 
for final goods and has accumulated a sufficient quantity of goods to provide for the consumption of the afore-cited pools 
during the pandemic. As a result, their consumption is not part of the flow resource constraint. This assumption simplifies 
the simulation exercise and has no bearing on its quantitative results as these pools are negligibly small throughout relative 
to the active population.

The utility function of the active workers is given by:

U (ct ,nt, Ḋt) = u(ct) − 1

ωn(Ḋt, t)
v(nt) − lnωx(Ḋt, t) (18)

We define and explain each term in turn:
(i) For consumption we postulate a conventional functional form and parameter value.

u(ct) = c1−ζc
t

1 − ζc
(19)

where ζc is the constant relative risk aversion parameter, which we set to 1.
(ii) For labor we postulate a conventional functional form and parameter value.

v(nt) = θ1+ζn
n1+ζn

t

1 + ζn
(20)

and ζn is the inverse Frisch elasticity of labor supply, set to 4, in line with the synthesis of micro evidence reported by 
Chetty et al. (2013), pointing to Frisch elasticities around 0.25.

This conventional term is multiplied by 1
ωn(Ḋt ,t)

capturing the individual response to the epidemic, in the spirit of mod-

eling by Kaplan et al. (2020, see their eqs. (21)-(22)). It expresses an increase in the marginal disutility of labor due to the 
social interactions component of market work in the times of the epidemic. It is a function of the current daily death rate 
Ḋt , and we assume 1 > ωn(Ḋt , t) > 0, ωn

ss = 1, and ∂ωn(Ḋt ,t)
∂ Ḋt

< 0.

(iii) The last term in equation (18) offsets the level shift in utility generated by the marginal utility shifter 1
ωn(Ḋt ,t)

. We 

assume 1 > ωx(Ḋt , t) > 0, ωx
ss = 1, and ∂ωx(Ḋt ,t)

∂ Ḋt
< 0 so that this term, − lnωx(Ḋt , t), is positive and increases in Ḋ . This 

offset follows Kaplan et al. (2020) when computing social welfare. The offset term precludes a big fall in one’s own indi-
vidual utility (and consequently in social welfare which aggregates individual utility) when others die, while the individual 
undertakes precautionary behavior. It can be interpreted as capturing the added value of precautionary behavior, i.e., the 
value to the individual herself or himself from engaging in precautionary behavior in the face of the death of others.

Under these restrictions, the utility function becomes:

U (ct ,nt, Ḋt) = ln ct − 1

ωn(Ḋt, t)
θ5 n5

t

5
− lnωx(Ḋt, t) (21)

The lifetime utility maximization problem of active workers, given the individual discount rate r, is given by:

max{ct ,nt }
∞∫

t=0

e−rt U (ct ,nt, Ḋt)dt = max{ct ,nt }
∞∫

t=0

e−rt
[

ln ct − 1

ωn(Ḋt, t)
θ5 n5

t

5
− lnωx(Ḋt, t)

]
dt (22)

s.t. ct = wnt (23)

Using the budget constraint, the F.O.C implies that individual labor supply of utility-maximizing agents can be written as 
follows:

nt = ωn(Ḋt, t)

θ

1/5

(24)

We assume the following functional form for the marginal utility shifter ωn(Ḋt , t):

ωn(Ḋt, t) = (
ωx(Ḋt, t)

)5
(25)

where ωx(Ḋt , t) is defined to be

ωx(Ḋt, t) ≡ (1 − g(Ḋt, t)), g(Ḋt, t) < g ∀t. (26)
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The function g(Ḋt , t) depends on the daily death flow and on time and is bounded from above by g . We discuss the 
restrictions on g(Ḋt , t) and its functional form below. We use estimation to undertake empirically-based parameterization 
of this epidemic-related feedback function, ωx(Ḋt , t).

Hence, optimal labor supply and consumption of individuals drop when death rates rise and are given by:

nt = 1

θ

(
1 − g(Ḋt, t)

)
(27)

ct = w · nt = w · 1

θ

(
1 − g(Ḋt, t)

)
(28)

The parameter 1
θ

in equation (27) represents optimal labor supply in steady state (nS S ) without the epidemic. The term (
1 − g(Ḋt , t)

)
is the endogenous time-varying reduction in the individual labor supply relative to the no-epidemic steady 

state, due to the rational behavioral response by individuals. In the course of the epidemic, actual labor supply is not 
necessarily the optimal labor supply given by equation (27), because the government might impose even stricter reductions 
on activity. Denote the limitation on labor supply mandated by the government by 1 −h(Lt , t), where Lt expresses lockdown 
measures. In that case, actual labor supply will follow the government mandate, and consumption will be set according to 
the budget constraint ct = wnt . Therefore, the following inequality should hold true in all periods:

nt ≤ 1

θ
(1 − h(Lt , t)) (29)

Hence, formally:

nt = 1

θ
min{1 − g(Ḋt, t),1 − h(Lt , t)} = 1

θ
(1 − max{g(Ḋt, t),h(Lt , t)}) (30)

ct = w · 1

θ

(
1 − max{g(Ḋt, t),h(Lt , t)}) (31)

2.2.2. Production and labor
Denote by Pt the aggregate population of active, representative agents in period t . In the pre-epidemic steady-state: 

Pt = PS S . During the epidemic, aggregate employment falls due to people being unable to work because of health reasons. 
The active population is therefore:

Pt = PS S · (1 − Dt − Xt − Ht − φMt). (32)

The hours of labor supplied by the representative agent in period t , nt , derived in equation (30), is in daily hours. The 
aggregate hours worked in period t , Nt , are thus:

Nt = Pt · nt (33)

In the pre-epidemic steady-state, NS S =PS S · nS S . During the epidemic, both aggregate employment Pt and the intensive 
margin nt change, so that:

Nt = PS S · (1 − Dt − Xt − Ht − φMt) · 1

θ

(
1 − max{g(Ḋt, t),h(Lt , t)}) (34)

Therefore, the relative scale of economic activity during the epidemic, aggregate hours worked by the active population 
relative to the pre-epidemic steady-state, is given by (noting that nS S = 1

θ
):

Nt

N S S
= PS S · (1 − Dt − Xt − Ht − φMt) · 1

θ

(
1 − max{g(Ḋt, t),h(Lt , t)})

PS SnS S
(35)

= (1 − Dt − Xt − Ht − φMt) · (1 − max{g(Ḋt, t),h(Lt , t)})
The production function of the firm is linear in aggregate hours:

Yt = A · Nt (36)

Y S S = A · N S S (37)

Where the empirical counterpart of A is the average daily output per worker in the pre-epidemic steady-state. The firm 
maximizes its flow profits w.r.t. employment so:

�t = ANt − wNt

→ w = A (38)
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Table 1
Menu of the Cyclical Strategies.

Note: k is the number of open (non-lockdown) days every 14 days.

Thus aggregate consumption of active workers equals the aggregate flow output:

Ct = Pt · ct = Pt · w · nt = Pt · A · nt = A · Nt = Yt (39)

We normalize to 1 the pre-epidemic steady-state population of representative agents, i.e., PS S = 1.

2.3. Policy based on time restrictions

The new policy, pertaining to the entire population, was introduced in Karin et al. (2020), where its epidemiological 
implications are analyzed extensively. Following an initial lockdown, move to a regime of k days of work and 14 − k days 
of lockdown, every 14 days. On work days, people are released from lockdown with strict hygiene and physical distancing 
measures on the same k weekdays for everyone. On lockdown days, people are kept away from work places as well as from 
other public spaces. Epidemiological measures need to be used throughout, including rapid testing, contact isolation, and 
compartmentalization of workplaces. All strategies respect regular weekends, facilitating application. Table 1 offers a visual 
summary.

Epidemic dynamics using these policies are discussed in detail below, where they are depicted graphically in Fig. 4 (see 
Section 4).

The rationale for the policy is as follows. Cyclical strategies reduce the average value of the reproduction parameter – 
which will be shown below to capture the progress of the disease – through two effects: time-restrictions and anti-phasing.

The time-restrictions effect is a reduction in the time T that an infectious person is in contact with many others, compared 
to the situation with no lockdown. For example, a 4-day work, 10-day lockdown cycle (k = 4) reduces T to 4

14 T ≈ 0.3T . The 
anti-phasing effect uses the timescales of the virus against itself. Most infected people are close to peak infectiousness for 
about 3-5 days, beginning after a latent period of about 3 days (on average) after exposure. A proper work-lockdown cycle, 
such as a 4-work 10-lockdown schedule, allows most of those infected during work days to reach maximal infectiousness 
during lockdown, thus avoid infecting many others. Those with significant symptoms can be infectious for longer, but 
remain hospitalized, isolated, or quarantined along with their household members, preventing secondary infections outside 
the household.

As Table 1 shows, we only consider k ≤ 8 in our analysis of the cyclical strategies. This is because higher values of k
imply shorter periods of lockdowns, for example, locking only on weekends. Though similar lockdown policies have been 
implemented (for example, in India), they do not line up with the epidemiological rationale of the cyclical policies. Fur-
thermore, we find that, in the U.S. context, such extremely open policy tools are hardly consistent with a policy of efficient 
epidemic suppression. As noted above, online Appendix A provides further details.

2.4. The planner problem

The Social Welfare Function. The benevolent planner maximizes discounted social welfare, in expected present value terms. 
In any given period, social flow welfare is the sum of the agents’ flow utilities, less the value of lives lost in that period:

W (T0, T1, T2) = (40)

=
∞∫

T V =0

f (T V ) ·
T∫

0

e−rt
[
PS S · (1 − Dt − Xt − Ht − φMt)U (ct ,nt, Ḋt)

−PS S VSLU · Ḋt

]
dt
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where ct and nt are defined in equations (30)–(31), T is the planning horizon, T V denotes the time till vaccine arrival 
distributed according to f (T V ), and the term VSLU denotes the statistical value of life in utility units.

The first term in the square brackets depends on the utility of active workers, from the group PS S ·(1−Dt−Xt−Ht−φMt), 
and is given by U (ct , nt, Ḋt), where ct , nt and Ḋt are defined in (30)– (31) and in (17). The planner assumes that the welfare 
of inactive agents is zero. Hence, relative to their steady state utility, prior to disease outbreak, there is a social welfare loss 
for the duration of their inactivity.

The second term in the square brackets is a lost lives value term, not part of the individual utility function. It often 
features in this context; see, for example, Acemoglu et al. (p. 492, 2021), Alvarez et al. (eq. (7) on p. 371, 2021), and 
Farboodi et al. (eq. (13) on p. 13, 2021). It is made up of the product of the aggregate death flow Ḋt and the value of 
statistical life in utility terms, VSLU .

The planner takes into account the possibility of a pharmaceutical resolution of the epidemic. We assume that at time 
T V a vaccine and a cure are found simultaneously (similar to the assumptions made by Acemoglu et al. (2021) and Alvarez 
et al. (2021)). We assume that after T V no new cases arise and all inactive workers recover immediately. The waiting time 
till vaccine/cure introduction is uncertain, and it is distributed according to the probability density function f (T V ), known 
to the planner. We elaborate on the functional form of f (T V ) and the intuition underlying it in sub-section 2.5 below. 
Immediately after T V , the economy moves to the no-epidemic steady state.

The Planner Maximization Problem. The planner takes the individual optimization described in sub-section 2.2.1 as given, 
and maximizes the afore-cited objective function through the choice of three regime-switching dates: T0, the start of the 
initial lockdown, T1, the date at which the planner switches from initial lockdown to the cyclical strategy, and T2, the 
date at which the planner abandons the cyclical strategy and removes all restrictions on economic activity. The lockdown 
regime Lt changes at dates T0, T1, T2, as described below, and the stringency of lockdowns under different regimes is fixed 
when the planner decides on the optimal timing T0, T1, T2. We describe the calibration of Lt under different regimes in 
sub-section 3.2.2 below. The full problem of the planner reads:

maxT0,T1,T2 W (T0, T1, T2) (41)

subject to equations (1)–(6), (9), (12), (13)–(17), (21), and (30)–(31), where lockdown policy Lt is defined as follows:

Lt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 i f t ≤ T0

LL i f T0 < t ≤ T1

LW = 0 on open days or LL on closed days i f T1 < t ≤ T2

0 i f t > T2

(42)

where LL is the lockdown stringency on “closed” days and LW = 0 on “open” days. We further assume that the process of 
learning (see the last term in equation (9)) is triggered either by the imposition of lockdown of at least 14 days or by the 
endogenous response that is significant enough (i.e., g(Ḋt , t) > LL ).

Social Welfare Loss. One can compute the social welfare loss in consumption or output terms. We define the flow welfare 
loss as follows:

W L
(
nt, Ḋt

) ≡ Ṽ (nss,0) − Ṽ
(
nt, Ḋt

)
(43)

where Ṽ t is the planner instantaneous utility, U (nss,0) = Ṽ (nss,0) is steady state utility with no deaths, and

Ṽ
(
nt, Ḋt

) = ln (w · nt) − 1

5

(
nt

nss · ωx(Ḋt, t)

)5

− lnωx(Ḋt, t)−VSLU · Ḋt (44)

We also define the function W L0 to be the welfare loss function when no disease is present

W L0 (nt) ≡ W L (nt,0) (45)

Appendix B shows that we can define the inverse function

ñt = W L−1
0 (W Lt) (46)

This function maps the instantaneous welfare loss, W Lt , to a corresponding hours value, ñt , that if worked in a world 
with no disease, would have caused this welfare loss. The decline in consumption (in percentage points) corresponding to 
W Lt is given by

C L (W Lt) = nss − W L−1
0 (W Lt)

nss
= 1 − W L−1

0 (W Lt)

nss
(47)

Equation (47) translates the instantaneous welfare loss W Lt to an instantaneous reduction in consumption, C Lt , in 
percentage terms. The corresponding PDV value of consumption reduction corresponding to the welfare loss due the disease 
is given by
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P D V _C L (W Lt) =
∞∫

t=0

exp (−rt) C L (W Lt)dt (48)

2.5. Modeling vaccine arrival time

The term f (T V ) is the probability density function of the availability of a vaccine at time T V . This is an important term 
as it sets the horizon for the problem, acting as a hazard rate for leaving the state of the pandemic. It is an expression of the 
essential risk and uncertainty embodied in the planner problem. Note that were we to model an arrival time known with 
certainty, not only would an important real world aspect be removed, but such modeling might create an artifact in the 
optimal plan. The planner may enable an outbreak shortly before vaccine arrival, relying on the vaccine to eradicate it. Such 
a plan is not robust to delays in the arrival time. Relative to the interest rate r, expressing time preference, f (T V ) plays 
the major quantitative role in discounting future streams. The constancy of r makes the planner problem time-consistent, 
as shown by Halevy (2004). We examine two alternative distributions for f (T V ).

The baseline distribution is the Gumbel distribution, which use is justified by the following logic. We assume that the 
arrival of the vaccine is a result of simultaneous competition among many firms. The time of arrival is the minimum 
development time across these firms. Note that over the course of 2020–2022 over 110 vaccines were in clinical trials and 
dozens more in pre-clinical evaluations. The distribution of arrival time is then well approximated by a Gumbel distribution 
(see Kotz and Nadarajah (2000)), which is a member of the family of extreme value distributions. Specifically, it is used 
for modelling the minimum of a sample from many distributions, including exponential, logistic, and normal distributions. 
Under mild regularity conditions, it is suitable to be a model for a sample minimum even when the distributions from 
which the sample is drawn are unknown. In our setting, we remain agnostic about the distributions of vaccine development 
time by individual firms.

In terms of the model, T V refers to the time of sufficient vaccination. With logistics, production times, gradual take-up 
rates, etc. an ex-ante expected 540 days seems reasonable relative to the March 2020 start date of the epidemic in the U.S.3

This number (540 days) is also the one used by Alvarez et al. (2021) and Farboodi et al. (2021), and is the middle of the 
range in Acemoglu et al. (2021).

The cumulative distribution function G (x) of a Gumbel distribution is defined over the real numbers and parametrized 
by a location parameter μG and a scale parameter σG :

G(x;μG ,σG) = 1 − exp

(
−exp

(
x − μG

σG

))
(49)

We anchor the distribution’s parameters (μG , σG), by positing that the mean of the distribution is 540 days, and that 
the probability of sufficient vaccination before day 360 is only 1%. These assumptions engender two linear equations:

E(Gumbel (μG ,σG)) = μG − EulerGamma · σG = 540

Q (Gumbel (μG ,σG) ,q) = μG + log (− log (1 − q)) · σG = 360

where E is the mean and Q is the quantile function. Targeting a mean of 540 and Q (q = 0.01) = 360 leads to the solution 
of μG = 565.83, σG = 44.74.

As an alternative we examine the exponential distribution, reflecting a Poisson process for vaccine arrival, at a fixed rate 
for any given day. This has been used by Acemoglu et al. (2021), Alvarez et al. (2021), Farboodi et al. (2021), and Jones et al. 
(2021). Its drawback is that it has a mode of zero, which is implausible in the case of vaccine development. We calibrate the 
parameter of the exponential distribution to 1/540, so that it has the same mean waiting time of 540 days as in Gumbel 
distribution.

Fig. 2 illustrates the resulting calibrated probability density functions. The Gumbel is shown by the solid line and the 
exponential by the dashed line.

The Gumbel distribution has an asymmetric bell-shaped form, with mode around 540 days, and a rather long left tail. 
The density drops quite fast after 540 days. The exponential distribution has the desired mean expected waiting time, 540 
days, but the implied probability density is strictly decreasing, implying that the first day of the epidemic is the most 
likely date of vaccine development. This property of the distribution is highly counter-intuitive. However, assuming the 
exponential distribution is convenient because it fits in smoothly with the exponential discount factor which is frequently 
used in dynamic optimization problems in Economics. In Appendix B we compare the use of Gumbel and Exponential 
distributions as the basis for an optimizing planner, and show that the welfare loss in using the Exponential is higher.

3 We have used 540 days in work on simulating this model since the summer of 2020. Actual developments turned out broadly consistent with this 
number.
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Fig. 2. Alternative Distributions of Waiting Time till Vaccine Arrival.

2.6. Benchmarks

We shall compare the results of simulating the model, calibrated for the U.S. economy, to the following benchmarks:
(i) and (ii) The polar cases of no policy intervention (i.e., no lockdown) or full lockdown till vaccine arrival.
(iii) The case whereby the duration of lockdown is set optimally. This is essentially the case of k = 0, i.e., no open days 

within a cyclical setting, and we shall denote it Optimal Lockdown.
(iv) A theoretical path trying to mimic real-world rationale by re-interpreting the planner problem as choosing thresholds 

for lockdown policy in terms of the critically ill, X . The first threshold defines a level X0 whereby if Xt > X0 an initial 
lockdown is imposed. Subsequently, a second threshold defines a level X1 whereby if Xt < X1 lockdown is released. Finally, 
a third threshold defines a level X2 whereby if Xt > X2 lockdown is re-imposed. The planner chooses the three thresholds 
optimally. The logic is that the first eruption of the disease is different from later eruptions, since the initial learning period 
has not yet occurred, and the endogenous response to death lags the infection. Therefore, X0 allows the planner the freedom 
to lock earlier or later in the phase of initial eruption, while X2 enables the planner to lock at a different threshold for later 
eruptions. The release threshold X1 is the same throughout. Note that this strategy leads to recurrent lockdown and release 
policies, and, that the planner here is not as constrained as in the case of the cyclical strategies, where we have allowed for 
only three optimal points in time to be chosen.

These four cases are compared to six cyclical strategies, which use k = 3, 4, 5, 6, 7, 8.
In Section 6 we compare the model to the actual experience of the states of New York and Florida.

3. Calibration and solution methodology

We calibrate the model to fit the U.S. economy, which was badly hit by COVID19. Throughout we work in daily terms. In 
Section 6, we discuss the methodology and calibration values used for the analysis of two specific states in the U.S.

3.1. Calibration of the epidemiological model

In Table 2, we present the relevant parameter values for the two blocks, where we rely on sources in the epidemiological 
and medical literatures published in Science, Nature, the Lancet, and JAMA, as detailed in the table’s notes.

3.1.1. The infection transmission block
For the duration numbers of the latency period (1/σ ) and the infectiousness period (1/γ ) we rely on studies that have 

appeared early on in the COVID19 pandemic and were published in Science; see Tian et al. (2020) and Li et al. (2020). These 
studies were co-written by university researchers from China (Tsinghua, Hong Kong, and others), from the U.S. (Harvard, 
Princeton, Columbia, Penn State, UC Davis, and NIH), and from the U.K. (Imperial, Oxford, and Southampton). Their findings 
are confirmed by studies on infector-infectee pairs; see He et al. (2020) and Ma et al. (2020). A number of papers (Tindale 
et al. (2020), Kong et al. (2020), and Ren et al. (2021)) highlight the fact that a significant part of disease transmission 
happens before the onset of symptoms. This implies that the latent period is shorter than the incubation period, which is 
usually 5-6 days (see the review in Bar-On et al. (2020) and the references therein). The latter appears within the clinical 
block to which we turn now.
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Table 2
Calibration.

Parameter Interpretation Range value

a. The Infection Transmission Block (SEIR)

σ latent period duration 3 − 5 days 1/3

γ infectious period duration 4 − 5 days 1/4

b. The Clinical Block

θP incubation period 5 − 6 days 1/5

θM days from symptoms till hospitalization 7 days 1/7

θH days in hospital till ICU 2 days 1/2

θX days in ICU before death 5.5 days 1/5.5

η Prob. to be asymptomatic 20% − 50% 0.5

ξ Prob. of hospitalization when 
symptomatic

#Hospitalized
#Inf ected= [2% − 4%]

0.04
1−0.5 = 0.08

π Prob. of ICU admission 10% − 40% 0.4

IFR Infection Fatality Rate (implied) 0.008

Sources:
1. Panel a: Bar-On et al. (2020); He et al. (2020); Li et al. (2020); Tian et al. (2020);
2. Panel b – Bar-On et al. (2020); Huang et al. (2020); Richardson et al. (2020); Salje et al. (2020).
Notes:
a. Range relates to number of days, unless noted otherwise.

b. #Hospitalized
#Inf ected = #Hospitalized

#S ymptomatic · #S ymptomatic
#Inf ected = ξ · (1 − η) =⇒ ξ =

#Hospitalized
#Inf ected

1−η .
c. I F R = ξ · π · (1 − η) · δ1.

3.1.2. The clinical block
The value for the duration till death is given by 1

θP
+ 1

θM
+ 1

θH
+ 1

θX
and is set at 19.5 days based on CDC estimates. We 

use X = 58,094
329.529∗106 = 1. 8 × 10−4 based on an estimate of 58, 094 ICU beds by the Harvard Global Health Institute.

The implied Infection Fatality Rate (IFR) is given by I F R = ξ · π · (1 − η) · δ1. Estimates of the Imperial College COVID-19 
Response Team (2020) and the meta-analysis findings of Meyerowitz-Katz and Merone (2020) put IFR at 0.8%. Meyerowitz-
Katz and Merone (2020) state: “Based on a systematic review and meta-analysis of published evidence on COVID-19 until 
July 2020, the IFR of the disease across populations is 0.68% (0.53% − 0.82%). However, due to very high heterogeneity in 
the meta-analysis, it is difficult to know if this represents a completely unbiased point estimate. It is likely that, due to age 
and perhaps underlying comorbidities in the population, different places will experience different IFRs due to the disease. 
Given issues with mortality recording, it is also likely that this represents an underestimate of the true IFR figure.” Using 
this number and the numbers for ξ, π , and η in Table 2, we derive δ1 = 0.5. We then calibrate δ2 = 0.5 to capture the fact 
that, with extreme loads on the public health system, the probability to die increases to 1 for each patient in need of an 
ICU bed (see the reasoning in sub-section 2.1 above).

3.2. Calibration based on estimation

We employ daily U.S. data to estimate key relations and use the point estimates to calibrate the model.

3.2.1. Data
The data series used are daily deaths, daily employment, lockdown measures, and the derived transmission rate. Ap-

pendix C elaborates on data definitions and sources. Fig. 3 plots these four variables.
The transmission rate falls rapidly till early April 2020; it then rises somewhat till June 2020 and subsequently fluctuates 

around a fairly stable level. The disease is represented by the daily death series, where a big surge starts the first wave in 
March 2020 and where the decline starts in late April 2020; a second wave peaks in January 2021. Employment falls rapidly 
to a low of 80% of its pre-pandemic level in mid April 2020 and recovers, first rapidly and then slowly, though not all the 
way to its pre-pandemic level. Policy is shown by the weighted lockdown stringency index, which rises to a high level by 
the last third of March 2020. It subsequently drops in June 2020 and stays constant except for a rise in part of November 
2020.

3.2.2. Dynamics of transmission and the reproduction parameter
We estimate equation (9), as reported in panel a of Table 3
The estimates imply the following. When Nt

N S S = 1 i.e., the economy is not locked and there are no sick or dead, at time 
t = 0:

β0 = β� + βW = 0.339 + 0.376 = 0.715
Y. Bar-On, T. Baron, O. Cornfeld et al. Review of Economic Dynamics 51 (2023) 292–321
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Fig. 3. Key Variables.

Table 3
Estimation Results.

a. Infection Transmission

βt = βW − βN

(
1 − Nt

N S S

)α + β� exp (−�t)

March 15, 2020-February 28, 2021

β� � βW βN α

0.339∗∗∗ 0.12∗∗∗ 0.376∗∗∗ 0.53∗∗∗ 0.69
(0.05) (0.01) (0.05) (0.12) (0.31)

R2 0.74
RMSE 0.0307
n 351

b. The Endogenous Response
Nt

Nss = 1 − max(�t Lt , κt Ḋt ) + εt

March 1, 2020-February 28, 2021

κ ϕκ � ϕ� μ f σ f

0.095∗∗∗ 0.18∗∗∗ 0.42∗∗∗ 0.59∗∗∗ 245∗∗∗ 27.5∗∗∗
(0.0001) (0.01) (0.007) (0.026) (2.36) (2.68)

R2 0.99
RMSE 0.0139
n 365

Notes:
a. Tables report point estimates with s.errors in parentheses.
b. ∗ p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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and so R0 = β0
γ = 2. 86

Given the estimated rate of decline, � = 0.12, in a little less than a month individuals adjust their behavior to the 
presence of the disease; subsequently, when exp (−�t) � βW we get:

βt = βW − βN

(
1 − Nt

N S S

)α

This implies βt drops endogenously below βW as a function of employment, yielding reproduction parameter Rt varia-
tion between 1.5 and 0.8.

3.3. Calibration of the economic model

Discounting. We posit a 4% annual discount rate (r = 0.04), converted to daily terms (used by individuals and conse-
quently by the social planner).

The value of φ. As in Glover et al. (2020), we assume that anyone who has any symptoms self-isolates and does not work 
(φ = 1).

The endogenous response, lockdowns, and employment.
In order to calibrate other values appearing in sub-section 2.2 we proceed as follows.
Without restrictions, equation (30) would allow employment to drop very significantly. This can even reduce employment 

to levels below what is usually regarded as essential employment plus work from home. Empirical estimates for the U.S. 
indicate that the minimum employment level under the most stringent lockdown measures was around 0.65 − 0.70 of full 
employment (see Blau et al. (2021) and Gregory et al. (2020)). We therefore calibrate this level of employment to be 0.68
and set g = 0.32.

We postulate that the functions g(Ḋt , t), h(Lt, t) are given by:

g(Ḋt, t) = κt Ḋt (50)

h(Lt , t) = �t Lt (51)

As discussed above, there is an overlap of compliance with lockdown and the endogenous response, so we use the 
maximal response. The variables �t and κt express the idea that both endogenous individual response and compliance with 
lockdown are modeled with time decay ft . We use the functional form proposed by Atkeson (2021, 2022) as follows:

ft = normal_cdf

(
t − μ f

σ f

)
(52)

�t = � (1 − (1 − ϕ�) · ft) (53)

κt = κ (1 − (1 − ϕκ) · ft) (54)

where normal_cdf is the CDF of the normal distribution, �t and κt are the time-varying parameters of the effects of com-
pliance lockdown and individual response on employment, respectively, and the parameters μ f , σ f , �, ϕ�, κ and ϕκ are to 
be estimated.

The resulting estimating equation is given by:

Nt

Nss
= 1 − max(�t Lt, κt Ḋt) + εt (55)

We non-linearly estimate equation (55) using data on Nt
Nss , L, and Ḋt in the period from March 1, 2020 to February 28, 

2021. The results are reported in Table 3b. We note that LL is calibrated to be the highest share of workers who did not 
work during the course of the disease in the U.S. i.e., 0.20.

Employment, Wages, and the Utility Function.
For the planner problem and the simulations we further need to calibrate θ and A. To do so we use two U.S. data points, 

as do Eichenbaum et al. (2021, pp. 5162-3): the representative person works 28 hours per week reflecting the average 
number of hours worked from the Bureau of Labor Statistics 2018 ATUS and earns an annual income of $58,000, using the 
2019 estimate from the U.S. Bureau of Economic Analysis.

Thus, pre-epidemic, which we call steady-state (S S), when g(Ḋt , t) = 0 we get, converting weekly hours to daily terms:

nS S = 1

θ

θ = 1/4 (56)

In the aggregate, no-epidemic steady-state: P S S = 1, and N S S =P S S · nS S = 4.
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Using daily income W and daily hours, the hourly wage is:

w = W

nS S
=

58000
365

4
= 39.73 (57)

We use equation (38) and set A = w .
Value of Statistical Life.
The planner objective includes the term P S S · Ḋt · VSLU , where VSLU is the value of statistical life. We determine its value 

and show how it fits in the social welfare function.
The central estimate in Hall et al. (2020) for the monetary value of statistical life lost to COVID19, VSLUSD , is 3.81 million 

USD, based on the EPA estimate of 270, 000 USD per year and the authors’ estimate of 14.1 years of remaining life on 
average. For robustness, we look at two sets of alternative values estimates in sub-section 5.3 below.4

To include these values in the social welfare function, we apply an oft-used methodology (see, for example, Farboodi et 
el. (2021, p. 16)), as follows: denote the Value of Statistical Life in utility terms by VSLU , so that the event of death in the 
model is associated with utility loss of VSLU . Individuals are indifferent between paying SHAREC of their flow consumption 
and avoiding the risk ε of losing VSLU , and not paying SHAREC of their flow consumption and carrying the ε risk of 
losing VSLU . Given the no-epidemic steady-state utility, this logic means that VSLU should satisfy the following indifference 
condition:

ln ct − θ5 n5
t

5

r
− εVSLU = ln ((1 − SHAREC )c) − θ5 n5

t
5

r
(58)

where

SHAREC = εVSLUSD × r
CUSD

365

(59)

The representative agent would be willing to pay S H AR EC so as not to lose VSLU with an ε risk of death; the payment, 
S H AR EC , is given by equation (59), paying εVSLUSD × r each day, where r is the daily discounting rate is r.

Assuming SHAREC � 1 we get − ln (1 − SHAREC ) � SHAREC and using our modeling of C = Y (which we have taken to 
be 58, 000 USD), we get:

εVSLU = SHAREC

r
=

εVSLUSD×r
Y USD
365

r

VSLU = VSLUSD × 365

Y USD
(60)

Thus the VSLU value we get is 23, 977 for the baseline VSLUSD value of 3.81 million USD.

4. Results

We present the results for the baseline calibration and explore some variations in the next section. Section 2 of Online 
Appendix C delineates the methodology of the simulations.

The optimizing planner chooses how long to wait till first lockdown (T0), when to start implementing a cyclical strategy 
(T1), and when to release completely (T2), for each instrument, namely for each given k. Optimal timing is based on 
probability-weighted scenarios for vaccine arrival over the horizon (T ) of two years. According to the vaccine arrival time 
distribution that we assume, the probability that it will take more than two years to introduce the vaccine is practically 0. 
In the simulations, vaccine arrival is actually realized on day 540, at its arrival time in expectation, using the afore-discussed 
Gumbel distribution.

We present the results for the benchmarks discussed in sub-section 2.6 above – no intervention, full lockdown, optimal 
duration lockdown, and a thresholds strategy on X – and the cyclical strategies. Table 4 reports the planner’s optimal timing 
T0, T1, T2, the resulting values of social welfare loss in terms of utility and in terms of consumption (both delineated in 
the table’s notes), loss of annual GDP (in PDV, per annum terms, evaluated over two years), and the cumulative number of 
deaths, per 1 million people.

Fig. 4 shows the time evolution of key series for three benchmarks (to avoid clutter we omit the optimal lockdown case) 
and three of the cyclical strategies (k = 4, 5, 8). The series plotted are as follows: flow deaths (

·
Dt ), the endogenous response 

κt
·

Dt , the effective reproduction parameter Re , the employment level relative to its pre-epidemic steady state Nt
N S S

, and the 

4 In Section 2.2 of Appendix B we delineate an elaborate procedure to get such VSL estimates using a number of data sources, including Greenstone and 
Nigam (2020), and taking into account age groups, finding very similar numbers.
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Table 4
Outcomes of the Different Policy Strategies – Baseline.

T0 T1 T2 WL (utility) WL (cons) GDP loss D (per 106)

Non-cyclical

(i) No Intervention 540 540 540 68.70 0.361 0.098 2,482
(ii) Full lockdown 0 540 540 46.75 0.291 0.287 21
(iii) Thresholds n.a. n.a. n.a. 38.35 0.248 0.201 425
(iv) Optimal L ( k = 0 ) 8 487 487 42.24 0.268 0.256 84

Cyclical

(v) k = 3 0 14 499 34.65 0.226 0.211 43
(vi) k = 4 0 14 511 32.95 0.221 0.197 76
(vii) k = 5 0 98 534 33.30 0.218 0.201 42
(viii) k = 6 0 120 540 36.14 0.240 0.194 218
(ix) k = 7 0 296 540 38.68 0.252 0.224 113
(x) k = 8 0 366 540 39.75 0.257 0.236 75

Notes:
a. We use

g = 0.32, VSLUSD = 3.81M$, IFR = 0.8%

b. T0 is the start day of lockdown, T1 start day of the cyclical strategy, and T2 the release day; the numbers in these columns indicate day number since 
the start of the epidemic. The assumption is that vaccine arrival happens on day 540.
c. Welfare loss (utility) – the realized welfare loss when the vaccine actually arrives on day 540, in PDV terms, i.e., the loss of W , which is defined as 
follows:

WL
(
nt , Ḋt

) ≡ Ṽ (nss,0) − Ṽ t
(
nt , Ḋt

)
where Ṽ t is the planner instantaneous utility and U (nss,0) = Ṽ (nss,0) is steady state utility with no deaths, and

Ṽ
(
nt , Ḋt

) = ln (w · nt) − 1

5

(
nt

nss · ωx(Ḋt , t)

)5

− lnωx(Ḋt , t)−VSLU · Ḋt

d. Welfare loss (consumption terms) – the realized welfare loss when the vaccine actually arrives on day 540, in PDV terms, in consumption terms as given 
by:

PDV_CL (W Lt) =
∞∫

t=0

exp (−rt) CL (W Lt)dt

where

CL (W Lt) = 1 − W L−1
0 (W Lt)

nss

See sub-section 2.4 for details.
e. GDP loss – loss in GDP terms computed as:

V Y =
730∫
0

e−rt
(

YSS

NSS
(NSS − Nt)

)
dt

f. Cumulative deaths D (per 106) – stock of death per million.

flow (first difference) welfare loss in consumption terms P D V _C L (Wt), as computed from equations (47)-(48). For clarity 
of presentation, the series (except for the endogenous response) are smoothed and what is presented is a 14 days moving 
average.

Table 4 and Fig. 4 show that the results can be characterized as follows.
The cyclical strategies with low k (k = 3, 4) lock the economy immediately for 14 days and then implement the cyclical 

strategy for an extended period of time. Because open days are relatively few, these strategies keep the epidemic under 
control. Flow deaths (

·
Dt ) and the stock of cumulative deaths (D) are very low, and Re is kept at 1 for most of the time – 

see the k = 4 case in Panel A of Fig. 4. As a consequence, the endogenous response κt Ḋt is low as well for most of the time, 
peaking at 1% of the work force during the initial breakout of the epidemic until it is contained.

During the prolonged cyclical phase, with relatively few open days, employment averages around 85% of its steady 
state level; GDP loss is around 20% − 21% in PDV per annum terms evaluated over two years. Welfare loss, in terms of 
the PDV over the two year period, is around 33 − 35 in utility terms (to be compared to other strategies below) and is 
around 22% − 23% in annual consumption terms. In flow terms, the loss is for most of the time around 15% of steady state 
consumption.
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Fig. 4. Six Policy Strategies. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The cyclical strategies with higher k (= 5, 6, 7, 8) lock the economy immediately for an extended period of time; the higher 
the k, the longer the initial lockdown period. They then implement the cyclical strategy up to vaccine arrival. During the 
initial lockdown period, starting at T0, Re is below 1, but when the cyclical regime is in effect, Re is above 1, and the 
higher the k, the higher is Re . Flow deaths (

·
Dt ) rise; see, for example, the k = 8 case in Panel a of Fig. 4. Consequently, 

the endogenous response κt Ḋt rises as well enhancing the efficacy of cyclical tools and driving the effective reproduction 
parameter Re towards 1.

In the case of k = 5, Re converges to just above 1 almost immediately with the start of the cyclical phase, while for 
higher k values vaccine arrival occurs before this convergence has been completed.

Looking at the k = 8 case in Panel a of Fig. 4 we see the following: employment is low, at 80% during the initial lockdown, 
and then jumps to around 90% at the beginning of the cyclical phase. It gradually declines thereafter, due to the endogenous 
response. The loss of GDP and welfare is higher relative to the low k ones: GDP loss is 24% as compared to 20% −21% in PDV 
per annum; welfare loss is 40 as compared to 33 − 35 in PDV terms (over two years), and 26% as compared to 22% − 23%
in annual consumption terms. In flow terms, welfare loss is quite stable at around 20% of steady-state consumption during 
the year-long initial lockdown, it then drops with the transition to the cyclical regime, and subsequently gradually rises to 
around 16% due to the increase in the death toll, until vaccine arrival.
308



Y. Bar-On, T. Baron, O. Cornfeld et al. Review of Economic Dynamics 51 (2023) 292–321
Fig. 4. (continued)

The results for three benchmarks, discussed in sub-section 2.6 above, to which we compare the afore-going cyclical 
policies, are as follows.5 Note, that the first two are non-optimizing, extremal benchmarks.

The no policy intervention case has the disease erupt: flow deaths (
·

Dt ) and the stock of cumulative deaths (Dt ) are the 
highest across all the policies examined here; total deaths are higher by a factor of almost 60 relative to the k = 3 or k = 5

5 While here we compare to theoretical benchmarks, note that in Section 6 below we directly compare the model results to two actual U.S. cases – New 
York State and Florida.
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cases. There is a strong endogenous response and employment falls to its lower limit, 68% of the steady state level. This 
endogenous response and the fast erosion of the Susceptibles pool, St , bring the effective reproduction number Re to unity 
in less than three months. GDP loss is relatively low, at around 10% in PDV per annum terms evaluated over two years, 
and results solely from the endogenous precautionary behavior of individuals. In PDV terms, the cumulative welfare loss is 
extremely high, at around 69 (compared to 33-40 in the cyclical strategies), which amounts to 36% of annual consumption 
(compared to 22% − 26% for the cyclical strategies). In flow terms, the welfare loss surpasses 50% of steady state flow 
consumption during the initial eruption and fluctuates between 10% and 30% of steady state consumption thereafter.

The full lockdown case has the disease under control as it entails an immediate lockdown, remaining in place until vaccine 
arrival. It leads to a very low number of deceased, 21 people per million. As it leads to a decline of employment of 80% of 
its steady state value, it has a substantial cost, at almost 29% of annual GDP in PDV terms over two years. This output loss 
translates to a welfare loss: in PDV terms the V loss is almost 47, as compared to 33 − 40 in the cyclical strategies, and is 
29% in annual consumption terms. In flow terms, it is around 19% of steady state consumption for most of the time.

The thresholds policy case follows a prevalent policy rationale, though this is not the policy actually implemented anywhere. 
The planner optimally chooses thresholds for lockdown policy in terms of ICU hospitalizations, X , and keeps the epidemic 
under control. Flow deaths (

·
Dt ) and the stock of cumulative deaths (D) are relatively low, and Re fluctuates between 0.76

and 1.40 most of the time. The endogenous response κt
·

Dt is low for much of the time, except for an initial spike. With 
the recurring lockdowns, employment fluctuates between 80% and 100% of its steady state level; GDP loss is around 25% in 
PDV per annum terms evaluated over two years. In terms of PDV welfare loss, the V decline is around 38 in utility terms, 
compared with 33 − 34 in the low k cyclical strategies, and is 25% in annual consumption terms, compared with 22% − 23%
in the low k cyclical strategies. In flow terms, the social welfare loss fluctuates between 4% and 20% of steady state flow 
consumption.

The optimal lockdown case (k = 0) features a long lockdown beginning on day 12 and results in outcomes that lie between 
the two extremal benchmarks and the thresholds policy case in terms of social welfare loss (see row (iv) in Table 4). It has 
a lower death toll relative to the thresholds policy with a higher GDP loss. It is clearly inferior to the cyclical strategies.

Overall, the emerging picture is that the extremal benchmarks yield high welfare losses. This is so because policy is 
either non-existent or non-optimal. All other strategies have lower welfare losses because they optimally balance the cost 
of deaths and economic costs. A policy using thresholds on X achieves substantial improvement in welfare terms but is still 
inferior to the low k strategies (with k ≤ 6). The cyclical policies obtain better welfare results within a narrow range. Hence 
the different cyclical policies perform the best, within the set of policies examined, but between them there is relatively 
little difference. In Section 6 below, we compare the cyclical strategies with real world results for two states, New York and 
Florida.

5. Exploring planner policies

While the preceding section presented the baseline results, in this section we analyze the mechanism, its implications, 
and robustness. First, we study the underlying mechanism, exploring the rationale for the planner optimal decisions (sub-
section 5.1). Subsequently, we evaluate the cyclical policies by comparing them to the alternative benchmark policies using 
a plot of the policy possibilities frontier (5.2). Finally, we study variations in key parameters (5.3).

5.1. The mechanism

The underlying mechanism is as follows. The progression of the epidemic can be classified by the effective reproduction 
number Re , which depends both on the current reproduction number Rt and on the current fraction of susceptibles St , 
i.e., Re = Rt · St , where Rt reflects the current policy intervention regime and/or the endogenous behavioral response 
of individuals to the epidemic. A low Re is achieved (i) following an extensive exposure of the population to the virus 
(engendering a low St ), (ii) by the endogenous response of individuals who decrease their activity, thereby reducing Rt , 
(iii) by imposing stringent policy restrictions to curb virus spread, thereby lowering Rt . The following classification is useful:

(i) When Re < 1, the epidemic is suppressed and the number of newly infected people declines with time.
(ii) When Re = 1, the disease is stable and an outbreak (i.e., a spurt of disease growth) is no longer possible, though 

susceptibles still do get infected at some slowly declining rate.6

(iii) When Re > 1, the amount of people who are infected daily grows, some of whom become ill, hospitalized, and may 
eventually die. However, this case is not sustainable over time: the rising daily death toll elicits an endogenous response 
from individuals, causing them to be cautious and to restrict their economic activity, which in turn reduces the infection 
transmission rate and thus reduces Re . Thus the endogenous response provides for a negative feedback mechanism, which 
prevents the disease from spiraling out of control.

We can now formulate the outcomes of the optimal planning problem in these terms. The outcomes presented in the 
preceding section basically follow one of two basic paths.

6 There is a decline in the rate of infection since the number of susceptibles St is declining with each person infected.
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Exogenous containment. This path implies that Re is kept below or around 1 throughout most of the planning period 
using stringent restrictions, while preserving the pool of the susceptibles intact to a large extent. This path requires strong 
suppression measures to be imposed for long periods of time. These measures either reduce the epidemic or keep it growing 
at a very slow pace. The costs in terms of foregone output are relatively high, but the death toll is low.

Endogenous containment. This path implies that there is a reduction in Re to around 1 through the endogenous response 
of individuals, while policy interventions are loose or short-lived. Since this path involves less prolonged and delayed in-
terventions, it is cheaper in terms of the loss of output, while the ensuing death toll is inevitably higher (relative to the 
exogenous containment path).

These two policy paths reflect planner choices in relation to the fundamental trade-off between economic costs and 
death tolls in managing the epidemic. The resolution of the trade-off, the optimal policy choice, depends on a number of 
factors: the extent to which economic activity can be maintained in lockdowns, the fatality rate of the virus, the scope of the 
endogenous response of individuals to death, and the value of statistical life. Importantly, it depends on the type of policy 
instruments available to the planner. It turns out that when cyclical strategies are in the policy toolkit, the fundamental 
trade-offs can be softened in a way that allows achieving lower economic costs and/or lower death tolls, all while waiting 
for vaccine arrival. The underlying rationale behind the social welfare improvement engendered by the cyclical strategies 
is that they average out k working days and (14 − k) lockdown days and therefore reduce Rt . The approximation of the 
average Rt , to be denoted Ra , is given by7:

Ra(k) � (14 − k) ·RL + k ·RWt

14
(61)

where RL is the reproduction number on days of lockdown, given by:

RL = βW

γ
− βN

γ
(LL)

α (62)

This is so under the assumptions that LL > κt Ḋt and that the economy has passed the initial stages of the disease so 
exp (−�t) � 1.

RW is the reproduction number on open days (no lockdown) and is given by:

RWt = βW

γ
− βN

γ

(
κt Ḋt

)α
(63)

This is so under the assumption that the economy has passed the initial stages of the disease so exp (−�t) � 1.

An effective lockdown policy measure LL , should be set such that RL < 1 i.e. LL >
(

βW −γ
βN

)1/α
.8

Combining equations (61),(62), and (63) yields:

Ra(k, Ḋt) � βW

γ
− βN

γ

(
k

14

(
κt Ḋt

)α)
− βN

γ

(
1 − k

14

)
(LL)

α (64)

The last equation shows that the reduction in the reproduction number (the terms with a minus sign) depends on a 
weighted average of lockdown measures and the endogenous response to death flow numbers.

We now make the connection between the afore-cited concepts: the effective reproduction parameter, Re , types of 
containment (exogenous and endogenous), and the average reproduction parameter, Ra .

The basic classification into containment types is made under the assumption that the death toll is low 
(

Ḋt � 0
)
.

If Ra(k, 0) � 1, the cyclical strategy is based on exogenous containment, and the disease is contained as long as the 
cyclical policy is in effect. This is so because when Ḋt � 0 and Ra(k, 0) � 1, then Re � 1 holds true throughout, the disease 
does not grow, and death rates remain suppressed so that the endogenous response plays no role.

If Ra(k, 0) > 1, endogenous containment takes place. The disease grows, triggering an endogenous response that drives 
Ra(k, Ḋt) down until Re = 1 and the disease is subsequently contained at some fixed level.

Note that all optimal cyclical strategies are based on restricting the size of the epidemic, so by the time of vaccine arrival, 
only 1% − 3% of the population is exposed to the virus. In other words, the policy-maker never relies on the erosion of the 
Susceptibles pool, St , as a means to drive the effective reproduction number Re down.

From the parameters estimated for the U.S., one can see that the low-k strategies (k = 3, 4) are used to achieve exogenous
containment, using a very early lockdown phase followed by an extremely prolonged cyclical stage. Exogenous containment 
is possible since the average reproduction parameter Ra implied by these strategies, even without an endogenous response, 
is low, and so they achieve an effective Re below unity. Crucially, they can bring down the infection while not closing down 
the economy completely.

7 The true average is not exactly a linear function of RW and RL (due to the anti-phasing effect and non-linearities of disease dynamics) and so this is 
a first order approximation.

8 The estimates for the relevant parameters satisfy this condition.
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The k = 5 strategy is based on endogenous containment, following an initial lockdown period of just above 3 months. 
However, the endogenous response is not quantitatively large: since Ra is only a little over 1, as the disease starts to grow, 
the endogenous response immediately brings Re to 1, keeping the disease, and death rates, at low levels ever since.

The less stringent strategies (k = 6, 7, 8) are used to achieve endogenous containment as well. These strategies use much 
longer initial lockdown periods (3 – 5 months), before moving to the cyclical phase. After initial suppression, using the 
cyclical strategies, the disease grows slowly, and with its rise, the endogenous response brings Re back to 1. These dynamics 
can be seen in Fig. 4 above. In Section 3 of online Appendix C we report the Ra and St values associated with these different 
policies.

5.2. The policy possibilities frontier

As discussed above, there are two major ways to deal with the epidemic, exogenous and endogenous containment. The 
trade-offs involved are most easily seen in a two-dimensional graph, that maps the outcome obtained under each instrument 
on two axes, the death toll per million people and the value of lost output in annual GDP terms. One can trace out a policy 
possibilities frontier using this graphical representation. Fig. 5 presents several variations of this frontier.

Panel a of the figure shows the frontier plot using the baseline values, discussed in Section 3 and presented in Table 4
and Fig. 4. Thus it shows the cyclical strategies as well as the benchmark strategies, discussed in sub-section 2.6. The analysis 
is conditional on the baseline VSLUSD = 3.81M$. The two extreme benchmarks of full lockdown (labeled ‘lock till vaccine’ 
arrival) and no intervention (labeled ‘do nothing’) are represented by two extreme points on the graph, with huge output 
or death toll, respectively, well beyond the frontier. The benchmark optimal duration lockdown policy (labeled ‘lockdown
only’) lies above the frontier too, as does the thresholds strategy benchmark. All cyclical strategies are located at the left 
part of the graph. The figure clearly shows that the use of cyclical strategies brings about a very substantial improvement in 
outcomes relative to the two extremes of no intervention or full lockdown (as also seen in the values reported in Table 4). 
Compared to the optimal thresholds strategy, the cyclical strategies provide significant improvement too.

In the zoomed-in graph, the cyclical strategies trace out two linear frontier curves, of the two types of containment. 
The strategies marked in green follow exogenous containment policies. These are low-k strategies with just a few days open 
each fortnight. They trade off a higher cost of lost output for a lower death toll. They are on the frontier marked in green, 
nearer the origin. The other cyclical strategies, marked in red (k = 6, 7, 8), are not as powerful in suppressing the epidemic, 
as more open days are allowed every fortnight and therefore rely on endogenous containment. They are represented by the 
frontier schedule in red, further away for the origin.

Notably, the outcome of the k = 5 cyclical strategy, which belongs to the endogenous containment set, is located in the 
vicinity of the exogenous containment strategies outcomes. This is so as it achieves a low Ra (1.05) and is superior to the 
other endogenous containments strategies. With this exception, under the baseline calibration, the outcomes achieved by 
exogenous containment strategies are superior to the outcomes of endogenous containment strategies. The former limit the 
economic activity of agents, using the cyclical strategy so that the disease does not erupt. The latter strategies rely on the 
reaction of people to the death toll in order to limit economic activity. In order to limit the death toll, these strategies rely 
on a longer initial lockdown period, which is more costly in terms of social welfare loss.

5.3. Variations in key parameters

We turn to examine robustness of our results and look at variations in key parameter values. We continue using frontier 
terminology and plots.

First, we look at variations in the Value of Statistical Life. Varying the planner’s preferences does not alter the big picture: 
the planner opts for a low death toll, and exogenous containment is preferred to endogenous containment. In the case of the 
exogenous containment strategies (k = 3,4) as well as in the case of the k = 5 strategy, the planner is near the limit of the 
possibility to minimize death, so the optimal planning choice does not change much with the change in value of V S L. In 
the case of the endogenous containment cyclical strategies (k > 5) the change of V S L translates into a movement along the 
frontier with an almost constant slope. A rise of V S L causes the planner to lengthen the initial lockdown period (an increase 
in T1 − T0), raising the loss of GDP and reducing death. A lower V S L causes the planner to shorten the initial lockdown 
period, which translates into a lower GDP loss and a rise in the death toll. We present the results in full in sub-section 2.2.3 
of Appendix B.

Second, the cited trade-offs also depend on the infection fatality rate. Panel b in Fig. 5 and Table 5 present the results 
with the alternative I F R values of 0.6%, and 1.2%.

A lower IFR means a less lethal disease so better outcomes can be achieved by the planner and thus welfare loss, 
compared to the baseline, is always lower. This enables the planner to shorten the initial lockdown period, which, combined 
with the lower IFR, leads to a lower death toll, lower GDP loss, or both. A higher IFR means that the disease is more lethal, 
and thus welfare loss compared to the baseline is higher. This leads the planner to lengthen the initial lockdown period, 
and with the higher IFR, there is either a higher death toll, a higher GDP loss, or both.

The most conspicuous feature of Fig. 5d is that low- k strategies fare much better, whatever the IFR. For all cyclical 
strategies, a higher IFR, usually translates into a upward-rightward movement (moving from black to blue points), with an 
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Fig. 5. The Policy Frontier.

increase of both death and output loss. A lower IFR usually translates into a movement downward-leftward (moving from 
black to green points), with a decrease in death and output loss.9

We conclude that the finding of low-k, exogenous containment strategies being superior is robust to the parameter value 
variations examined.

9 The k = 7 strategy with low IFR is an exception. Under the baseline VSLUSD = 3.81M$ and with lower IFR the planner narrowly prefers the 712 deaths 
per million and 0.17 output loss, to the 100 deaths per million and 0.22 output loss, which would have made it closer to the other 7 − 7 points.
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Fig. 5. (continued)

Table 5
Parameter Variations – IFR.

value of life: IFR = 0.6%

k k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

T0 0 0 0 0 18 0
T1 14 14 98 113 35 352
T2 498 507 530 540 540 540
WL (utility) 34.44 32.49 32.99 35.26 39.02 39.31
WL (cons) 0.224 0.217 0.215 0.235 0.262 0.254
Output loss 0.210 0.195 0.200 0.192 0.166 0.233
D (per 106 ) 33 60 32 185 712 73

value of life: IFR = 1.2%

k k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

T0 0 0 0 0 0 0
T1 14 37 99 162 317 380
T2 501 509 540 540 540 540
WL (utility) 35.05 33.37 33.85 37.42 39.56 40.47
WL (cons) 0.230 0.221 0.223 0.247 0.257 0.261
output loss 0.212 0.201 0.204 0.204 0.230 0.240
D (per 106 ) 62 64 57 217 120 85

Notes: See Table 4.

5.4. Discussion

What is the broader picture emerging from the analysis? Even in the absence of any restrictions, two mechanisms lead 
to output loss. The first is the direct effect generated by infected people who cannot work. The second, and more significant 
one, is that individuals self restrict their economic activity in order to avoid infection. In our analysis output loss without 
policy intervention was shown to be significant. This demonstrates the critical role of the endogenous individual response 
to the disease and holds true under other active planner strategies too. To be more specific, under laissez-faire, i.e., no 
intervention, the negative feedback mechanism engendered by the endogenous response alone curbs the spread of the 
disease; as shown in Fig. 4d, Re drops to below 1 in a month and subsequently converges to 1. After 18 months, only 
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30% of the population are infected and the ICU limit is almost never breached. Without such endogenous response, disease 
growth would be so rapid that even after a considerable amount of the population is infected and the susceptible pool is 
greatly depleted (such that Re = 1), it takes a while for the disease to slow down, with a considerable death toll.

At the other extreme, under full lockdown, it is not possible to eliminate the disease completely. A seed of the disease 
is always present in the population, or, alternatively, is imported from the outside.

These findings give perspective on the role of policy. The main aim of policy is not to “flatten the curve” or prevent 
an overshoot. These aims are achieved by the endogenous individual response. Policy cannot eliminate the disease or avoid 
its economic costs. Using lockdowns, policy is truly needed in order to “buy time.” This is the time needed for individuals 
to adapt to the disease and for governments and for the pharmaceutical industry to develop vaccines and treatments. The 
question, then, is how best to do so. We show that cyclical lockdown strategies are useful in this context, as they enable 
the planner to smooth out the costs over a longer period of time. Doing so they reduce the total social welfare loss in 
PDV terms. We have analyzed the dynamics of these policies in detail, including its two modes of containment and the 
fact that these strategies keep Re close to 1. Note that our simulations incorporate vaccine arrival time as discussed in 
sub-section 2.5 above and in Appendix B. Iverson et al. (2021) analyze and emphasize the importance of expected arrival 
time in this context.

6. The cyclical strategies vs actual experience

The cyclical strategies can be compared to actual real world experience. We do so by simulating optimal plans under 
the cyclical strategies and comparing them to a policy path based on the experience of the states of New York and Florida. 
The choice of these two states is motivated by the fact that both experienced high levels of the epidemic but very different 
dynamics.

6.1. Data and methodology

We use state-level data on daily deaths, daily employment, lockdown measures, and the derived transmission rate, from 
the same sources spelled out in Appendix C for the national-level data. N S S is taken to be state-level employment on 
March 1, 2020.

We employ the same methodology for the simulation as described above, after re-estimating the transmission equation 
and the endogenous response equation for each state. The equations specifications were adapted to cater for the state-
specific data. For the transmission equation we used α = 1 for both states and a different specification for β� in the Florida 
equation. The endogenous response equation had no time decay term, as none is apparent in the data. See the specifications 
delineated in the table. The estimates are reported in Table 6.

The fit of the equations is good for the most part; the estimated κ indicates a lower endogenous response relative to 
the U.S. as a whole but close to the post-fatigue value in the U.S. The implication is that in both Florida and New York, 
employment was controlled more by the policy response and less by the endogenous response.

In New York the estimated βt captures well the rapid drop of the reproduction parameter R0 from its initial value due 
to strict lockdown, as well as the subsequent gradual rise to values well above Rt = 1. In Florida, the range of values for βt , 
in estimation as in the data, is much narrower; for most of the time the reproduction parameter is above 1.

6.2. Results

We report the results as we did in Table 4 and Fig. 5 above for the whole U.S. economy. We compare the results to actual 
data.10

Both Table 7 and Fig. 6 refer to the data sample period used for the estimation reported in Table 6. The first panel of the 
figure looks at the data together with the cyclical strategies, while the second looks only at the latter set.

There is a substantial difference between the two states and we analyze each in turn.
New York State. As seen in Fig. 6, the actual data point for NYS is very far from all the cyclical strategy points. In 

comparison to the cyclical strategies, the actual data exhibit a far higher death toll and just a slightly lower GDP loss. In the 
data the death toll is 2, 346 dead per million and the GDP loss is 0.15. The cyclical strategies entail a far lower death toll, 
between 7 and 29 per million, and a GDP loss of between 0.16 and 0.21, the former number being just a little above the 
data number.

Looking within the cyclical set, both the second panel of Fig. 6 and Table 7 show that there is variation, with the 
strategies using k = 3 and k = 4 being different from those using k = 5, 6, 7, 8. This panel depicts linear policy possibilities 

10 As explained in Table 4 above, GDP loss is given by

V Y =
730∫
0

e−rt
(

Y S S

N S S
(N S S − N(t)

)
dt
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Table 6
Estimation Results for New York State and Florida.

a. New York State, March 15, 2020 to February 28, 2021.

a. Infection Transmission

βt = βW − βN

(
1 − Nt

N S S

)
+ β� exp (−�t)

β� � βW βN

0.202 0.967∗∗∗ 0.517∗∗∗ 1.519∗∗∗
(0.437) (1.777) (0.0112) (0.0797)

R2 0.559
RMSE 0.0631
n 351

b. The Endogenous Response
Nt
Nss = 1 − max(�Lt , κ Ḋt ) + εt

κ �

0.00506∗∗∗ 0.224∗∗∗
(0.000218) (0.00274)

R2 0.998
RMSE 0.0339
n 352

Notes
a. The tables report point estimates with s.errors in parentheses.
b. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

b. Florida, March 27, 2020 to January 31, 2021

a. Infection Transmission

βt = βW − βN

(
1 − Nt

N S S

)
+ (βMax − βW )exp (−�t)

� βW βN

0.0912 0.329∗∗∗ 0.496∗∗∗
(0.174) (0.0121) (0.135)

βMax = 0.364

R2 0.971
RMSE 0.0495
n 311

b. The Endogenous Response
Nt
Nss = 1 − max(�Lt , κ Ḋt ) + εt

κ �

0.0118∗∗∗ 0.174∗∗∗
(0.000754) (0.00334)

R2 0.999
RMSE 0.0326
n 324

Notes:
a. Tables report point estimates with s.errors in parentheses.
b. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

frontier schedules. Table 7 shows that the values of welfare losses vary across these strategies within a narrow range. The 
policy differences across the cyclical strategies are manifested in T1, which values are much higher in the k = 5, 6, 7, 8
group, so GDP losses and welfare losses are higher. We can call the former group exogenous containment strategies, and the 
latter group endogenous containment strategies, using the terms delineated above. Only the exogenous containment strategies 
bring the average effective reproduction parameter, Ra , to values close to unity. The endogenous containment strategies per 
se are unable to do so and do not contain the epidemic, hence the planner resorts to a very lengthy initial lockdown period 
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Fig. 6. Policy Possibilities Frontier Plots for New York State and Florida.

(see Table 7). The reasons for this inability to contain the epidemic are two: the implied RW , derived from the estimated 
βW , is relatively high and the estimated endogenous response parameter, κ , is relatively low.

It is clear that actual policy underperformed and achieved only weak containment. In particular, note that the use of 
moderately stringent cyclical tools implies a dramatic reduction in the death toll and only a slight increase in output costs 
relative to actual experience. Timing is key here – the optimal use of the cyclical strategies here involves an immediate 
initial lockdown, which proves to be critical in curbing the disease during its exponential growth phase. Compared to the 
optimal policy, waiting with the initial lockdown resulted in death tolls that are higher by a factor of at least 81. It thus 
appears that lockdown in New York State started very late and that a significant outbreak was facilitated.

Florida. This state had a death toll of 1, 230 dead per million and a GDP decline of 0.08; the cyclical strategies entail 
once more a far lower death toll, between 11 and 18 per million, but a bigger loss of GDP, around 0.14 – 0.17. The cyclical 
strategies are able to bring the average effective reproduction parameter Ra to values close to unity and so to contain 
the epidemic. Only the k = 3 strategy is based on exogenous containment, with Ra < 1, with all other cyclical strategies 
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Fig. 6. (continued)

k = 4, 5, 6, 7, 8 based on endogenous containment. Initial lockdown duration, T1, is a month and half with k = 3, 3-4 months 
for k = 4, 5, and longer durations for higher k values, with higher GDP losses and welfare losses.

Actual policy in Florida seems to have preferred a lower GDP decline and a much higher death toll. Using the current 
set-up this can be viewed from two perspectives:

(i) Absent cyclical tools, actual policy outcomes are compatible with a strategy based mostly on endogenous containment, 
such as to lock and then release until a vaccine is found, without a cyclical phase. For example, a simulation of locking for 
56 days (8 weeks) and then releasing yields a GDP loss of 0.076 and a death toll of 1, 306 dead per million, very close to 
the data.

(ii) When cyclical tools are available, and when VSL is at 2.15M$, then an optimal cyclical strategy can lead to the data 
outcome. In panel c of Table 7 we show that a planner using k = 10 (which locks only on weekends) will optimally choose 
T0 = 49, T1 = 63, T2 = 421, i.e., delay the initial lockdown for 7 weeks thereby letting the disease erupt, lock for two weeks, 
and then lock only on weekends (k = 10). Such a strategy yields a GDP loss of 0.079 and a death toll of 1, 294 dead per 
million, similar to the actual data. Note that this value of statistical life, 2.15M$, is 56% of our baseline value (3.81M$) and 
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Table 7
State Level Outcomes (at the end of the sample period).

a. New York State - March 15, 2020 and February 28, 2021.

T0 T1 T2 WL (utility) WL (cons) GDP loss D (per 106 )

LL = 0.22;VSLUSD = 3.81M$; I F R = 0.8%

(i) k = 3 0 14 540 29.45 0.170 0.168 20

(ii) k = 4 3 58 540 28.41 0.165 0.160 33

(iii) k = 5 0 345 540 36.43 0.206 0.210 7

(iv) k = 6 0 449 540 36.74 0.208 0.212 7

(v) k = 7 0 479 540 36.74 0.208 0.212 7

(vi) k = 8 0 500 540 36.74 0.208 0.212 7

b. Florida, March 27, 2020 to January 31, 2021

T0 T1 T2 WL (utility) WL (cons) GDP loss D (per 106)

LL = 0.21;VSLUSD = 3.81M$, I F R = 0.8%

(i) k = 3 0 44 449 24.55 0.148 0.146 17

(ii) k = 4 0 105 473 24.30 0.146 0.144 14

(iii) k = 5 0 115 506 23.38 0.141 0.139 15

(iv) k = 6 0 127 540 22.52 0.137 0.133 18

(v) k = 7 0 205 540 24.90 0.149 0.148 13

(vi) k = 8 0 282 540 28.35 0.168 0.169 11

c. Florida, March 27, 2020 to January 31, 2021, VSL= 2.15M$

T0 T1 T2 WL (utility) WL (cons) GDP loss D (per 106)

LL = 0.21;VSLUSD = 2.15M$, I F R = 0.8%

(i) k = 4 49 63 444 23.18 0.142 0.115 469

(ii) k = 6 49 63 454 23.37 0.144 0.100 741

(iii) k = 8 49 63 442 24.63 0.149 0.089 1039

(iv) k = 10 49 63 421 25.99 0.154 0.080 1294

Notes:
1. See Section 7 of the paper.
2. See the notes to Table 4.

is $152, 000 in annual terms. Such a low value, though still within the range cited by Hall et al. (2020) of $100, 000 to 
$400, 000 per year, may have been underlying the policy actually used in Florida.

7. Conclusions

Looking forward, the COVID19 pandemic is unlikely to be the last one. There are dozens of coronaviruses (according to 
CDC data, seven of which can infect humans); new influenza strains can be as deadly as the ones that have killed millions 
in the pandemics of the twentieth century; and Zoonotic infections (like Ebola, SARS, or zoonotic influenza) have increased 
significantly over time (see Jones et al. (2008) and Salyer et al. (2017)). These diseases pose an increasing and critical threat 
to global health security, with ever growing connectivity and mobility of people, animals, and goods. The June 2021 report 
of a high level G20 panel11 states that “We are in an age of pandemics.... There is every likelihood that the next pandemic 
will come within a decade — arising from a new influenza strain, another coronavirus, or one of several other dangerous 
pathogens. Its impact on human health and the global economy could be even more profound than that of COVID-19.” 
Meganck and Baric (2021), May (2021), and references therein, provide detailed elaboration of the key forecasted threats.

Our paper has studied the optimal timing patterns of a new, cyclical policy strategy, consisting of alternating days 
of opening and lockdown. Given significant trade-offs between health outcomes (deaths, breaches of ICU capacity) and 
economic outcomes (loss of output and employment), the analysis has shown that epidemic management policy based on 
such time restrictions may lead to significant improvement in terms of social welfare. The comparison was made relative to 
four hypothetical benchmark policies, as well as to the experience of New York State and Florida.

The analysis, which is relevant for any future epidemic, laid down the principles for time restrictions policy, as well 
as a framework for comparative policy analysis. Exploring this policy seems a promising avenue for future research in the 
context of managing epidemics. The analysis clearly shows that such time-based strategies allow for a nuanced response to 

11 See the report of the High Level Independent Panel on Financing the Global Commons for Pandemic Preparedness and Response at https://pandemic -
financing .org /report /foreword/.
319

https://pandemic-financing.org/report/foreword/
https://pandemic-financing.org/report/foreword/


Y. Bar-On, T. Baron, O. Cornfeld et al. Review of Economic Dynamics 51 (2023) 292–321
observed epidemic dynamics, without resorting to singling out a particular population group. It is important to note that 
the afore-mentioned advantages of the cyclical strategies over prevalent policies are likely to be a lower bound of their 
full benefits. First, in our model the planner is deliberately constrained in the way cyclical tools are applied; for example, 
the planner is not permitted to mix within the set of strategies, or apply them in a staggered way. Giving the planner 
additional degrees of freedom, as we do for the benchmark thresholds strategies, should increase the advantages of the 
novel instruments over prevalent policies. Second, and not less significant, our model does not allow us to quantify the 
additional benefits of cyclical tools, such as the predictability of production that they entail, as well as their potential to 
alleviate part of the negative impact of prolonged isolation on mental well-being. These issues require a more elaborate 
analysis and are left for future research.

It should be noted that we have abstracted from heterogeneity across individuals and from modeling the coordination of 
work and leisure decisions. We have also abstracted from policy such as testing or contact tracing. Such issues have been 
addressed in the COVID19 context, albeit in different modeling frameworks, by a number of recent papers. Thus, Berger 
et al. (2022) examine how testing and targeted quarantine will work in an efficient reopening, whereby output increases 
while deaths are reduced. They use virological and serological testing, and their model features permanently asymptomatic 
individuals, incomplete information, and a reduced-form behavioral response. Chari et al. (2021) examine how targeting of 
lockdown policies in a world with heterogeneity achieves better outcomes relative to indiscriminate lockdowns. Glover et 
al. (2020) analyze old-age issues and redistribution policy. Fuchs-Schündeln et al. (2021) look at the heterogeneous impact 
of school closures on children during COVID19. Extensions of the analysis along these lines are also left for future research.
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