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When to Lock, Not Whom:
Managing Current and Future Epidemics Using Time-Based Restrictions

1 Introduction

The COVID19 pandemic has created a global health and economic crisis of a
magnitude not experienced since the Great Influenza Pandemic of 1918-1919.
After about 19 months, over 230 million people have become infected by offi-
cial counts worldwide and about 4.7 million have died. The death toll in the
U.S. is over 680,000, and the declines in U.S. GDP and consumer expenditures
for 2020 have been —3.4% and —3.8%, respectively. The March 15, 2021 editorial
in Nature Medicine states that “Many governments...mistakenly attempted to
manage COVID19 like influenza, resulting in repeated lockdowns, high excess
morbidity and mortality, and poor economic recovery...As the virus prolifer-
ated across the globe, it also revealed critical vulnerabilities in our global and
national health governance systems that have resulted in inadequate outbreak
responses.” This paper addresses the policy responses in question.

Since its beginning, there has been a rapidly expanding research effort ded-
icated to COVID19 analysis in many disciplines, inter alia, in Economics. A key
line of research posits a planner problem that seeks to derive optimal policy —
Non-Pharmaceutical Interventions (NPIs), and in particular, lockdowns — sub-
ject to a model of disease dynamics, taking into account vaccine arrival. The
planner trades off the costs of public health outcomes, such as breach of ICU
capacity and death, with the economic costs of suppression policy, including
declines in production. This paper offers two innovations, within this line of
analysis.

One is to introduce novel policy tools for pandemic or epidemic manage-
ment, based on time restrictions. The proposed tools consist of alternating pe-
riods of work and lockdown, at pre-defined frequencies, for the entire popula-
tion. The paper stresses the crucial multiple roles played by time in this con-
text. We present both normative and positive analyses. The former applies to
the management of the ongoing COVID19 pandemic, as well as to any future
pandemic or epidemic. We elaborate on the risks for such future outbreaks of
viral infectious diseases. The latter analysis evaluates policy against real world
benchmarks in the U.S. using data.

The second is a modelling contribution. It comes against the background of
prevalent misspecification of disease dynamics in Economics research, at odds
with the epidemiological evidence, explored in detail in a companion paper
(Bar-On, Baron, Cornfeld, Milo, and Yashiv (2021)). We have shown that erro-
neous modelling has substantial consequences for policy. Two key properties
of disease dynamics, its scale and speed, are at the center of misspecification.
Here we present a constructive alternative with a sound model that may guide
researchers and place the analysis in Economics on solid footing. We evidently
eschew the cited modelling errors.

The novel tools are particularly relevant in light of the difficulties experi-



enced by policymakers in finding a policy strategy that lessens the trade-offs
involved. In theory, targeted population lockdowns could constitute “fine tun-
ing” of lockdown measures, which would serve to lessen any economic cost. In
practice, however, it turned out to be challenging to identify sub populations to
be allowed unrestricted economic activity, while imposing restrictions on other
population groups. Political and moral issues, as well as practical implemen-
tation issues, have come into play. This was made even more difficult by the
uncertainty with respect to the exact state and dynamics of the epidemic. The
novel, time-based public health management policy avoids these difficulties,
taking time, rather than population, as the medium of restrictions.

We highlight five dimensions related to time:

(i) From the normative perspective, the paper analyzes novel policy that re-
lies on time restrictions. Such policy is an alternative to policy based on restric-
tions of sectors, age groups, regions, or other targeted population groups. It
is a cyclical strategy, using an alternating work and lockdown schedule for the
whole population, to manage the epidemic ahead of full vaccine introduction.

(ii) The rationale for the proposed policy is directly based on the timescales
of virus transmission. The essential idea is that for every 14 day period, there
will be k days of work and 14 — k days of lockdown. This number, k, uses the
timescales of the virus against itself, inter alia taking into account a latent pe-
riod after exposure, whereby the infected person does not infect others. This
policy follows epidemiologically-grounded work by Karin et al (2020). For fu-
ture epidemics, a similar empirical logic would apply. We elaborate on this
issue below.

(iii) Using an optimizing social planner model, the control variables for this
policy are the timing of the various measures — initial lockdown, the cyclical policy
phase, and release. Hatchett, Mecher, and Lipsitch (2007) highlight the idea that
imposing NPIs early in an epidemic can significantly reduce mortality. In the
current paper, the exploration of timing issues, both start time and duration,
are at the heart of the analysis.

(iv) This policy is compared to a prevalent policy path which sets lockdown
and release as functions of disease prevalence, which is time-varying. Specifically,
the latter uses trigger thresholds, such as the number of persons hospitalized
in ICU in a given period of time, and gives rise to the pattern of recurrent lock-
down and release observed in the U.S. and other countries since the start of
COVID19.

(v) The proposed policy is subsequently compared to the actual experience
of New York State (NYS) and Florida. The outcomes observed for these states
turn out to depend crucially on the timing of the policies undertaken.

The model explicitly takes into account two important realistic elements:
one is a dynamic path for the reproduction parameter, reflecting both rational
individual behavior and the effects of suppression policy. We take into account
that individuals adjust to the new environment and behave differently, both
with and without government interventions. These changes happen in part as
a direct result of government NPIs and in part as a voluntary response. We
model this time variation by relying on data estimation.



The second is vaccine arrival. The planner uses a PDF to form ex-ante expec-
tations of this arrival time. We use two alternative distributional assumptions
in this modelling: the exponential (underlying a Poisson arrival rate) and the
Gumbel. The latter is used with the rationale that modelling the arrival time of
the vaccine as a result of simultaneous competition among many firms is well
approximated by a Gumbel distribution. In our simulations vaccine arrival is
realized after 540 days.

Using these elements, the analysis quantifies the cost of the pandemic from
a social welfare perspective, computed using the social planner optimally min-
imized loss function. The latter is a PDV expression of future GDP losses and
the social costs of deaths. Important in this loss function is the hazard rate, ex-
pressed by the cited probability of vaccine arrival at a future date. This element
serves three key roles; first, it sets the horizon for the problem, acting as a rate of
leaving the state of the pandemic. Second, it is an expression of the risk and un-
certainty embodied in the planner problem. Third, relative to the interest rate, it
plays the major quantitative role in discounting future streams. Note that with
the advent of SARS-COV-2 variants and with possible future pandemics, this
hazard modelling is likely to be highly relevant in the future.

We simulate the optimal time-restrictions (cyclical) policies and examine
their health and economic implications. The methodology is to find the val-
ues of three time points that minimize the planner cost function. We solve the
continuous time system of ODE describing the stocks of population in different
epidemiological and clinical states. The solution is obtained using a hierarchical
search of the three-dimensional control variables space. We derive a set of inter-
polated functions describing the dynamics of all stocks, enabling us to evaluate
the planner’s objective.

The cyclical policy is compared to four non-cyclical benchmarks: two polar
cases, of no policy intervention (i.e., no lockdown) or full lockdown till vac-
cine arrival; a single time span lockdown policy, whereby the starting date and
the duration are chosen optimally; and a theoretical path trying to mimic real-
world policy, whereby the planner chooses thresholds for multiple lockdowns
in terms of the critically ill. We also evaluate the novel tools in relation to the
2020 experience of NYS and Florida. The latter comparison allows us to check
the validity of our model in the data, as we compare the outcomes predicted by
the model to the data.

We trace out a policy frontier consisting of outcomes of optimal planner
policies under the cyclical instruments, using a two-dimensional graph of the
death toll per 1 million people and the value of lost output, in annual GDP
terms. Movement along the frontier occurs as the policy instrument in use
changes, or as the weight assigned to fatalities in the planner objective func-
tion changes.

Our analysis yields the following key findings.

First, in terms of the policy frontier, for the most part a trade-off between
health and economic outcomes is clear, with deaths rising and output loss falling
with an almost constant proportion. Movement along the frontier is generated
by variations in the stringency of interventions. This variation happens either



because the policy instruments used vary, or because a different relative weight
is assigned to losses due to death. In short segments at the extremities, the fron-
tier is almost vertical (where the death toll is low) and almost horizontal (where
the death toll is high), implying no trade-off.

Second, the novel instruments, based on time restrictions, provide for sig-
nificant improvement, substantially lessening the trade-offs involved relative to
the four non-cyclical benchmarks. The latter are situated in points on the graph
beyond the frontier.

Third, we quantify social welfare in terms of planner costs. These are given
in Present Discounted Value (PDV) terms over two years, in units of GDP per
annum. While the different cyclical strategies place these losses at 27% to 32%
of annual GDP in PDV terms over two years, the no intervention policy results
in 113%, full lockdown in 50%, optimal lockdown in 42%, and the thresholds
strategy in 34% of annual GDP The underlying rationale for the improvement
is that cyclical strategies allow the planner to achieve similar death tolls with
fewer lockdowns, or to reduce the death toll dramatically without a significant
damage to output. These results are due to the optimally-derived timings of
intervention (for example, “front loading” interventions is beneficial in specific
cases, which are spelled out) and the ability of the cyclical strategies to suppress
the disease while maintaining a reasonable level of economic activity.

Fourth, using daily data from March to November 2020, optimal cyclical
policies fare much better than actual experience in the states of New York and
Florida. While deriving this result, we confirm that the model is able to repro-
duce the data outcomes observed in each state, using state-specific parameters
in the simulations.

Importantly, the benefits of the time-based policy tools that we find are
likely to be a lower bound of their true advantage over policy strategies that
have been implemented. This is so because, for tractability, we are not giving
the planner full flexibility when applying the cyclical tools. Similarly, we do
not quantify additional benefits, such as predictability of production, gains in
non-COVID health matters, transparency, ease of communication, and fairness.

We note that the idea of a cyclical strategy, which is at the focal point of the
normative analysis of this paper, has been brought to the attention of policy-
makers (see Yashiv (2020), Alon and Yashiv (2020), and Alon, Milo and Yashiv
(2020)) and has been considered or implemented by a host of firms and educa-
tional institutions in the U.S., in Europe, and in Latin America. Online Appen-
dix A provides elaboration.

The analysis points economic researchers at an accurate way to model the
dynamics of the disease and to analyze epidemic management policy. It will
be useful for other epidemics beyond COVID19, as the analysis is pertinent to
other viral infectious diseases.!

The paper proceeds as follows: in Section 2 we present some key data facts
on lockdowns and their economic effects in the U.S., discuss the relevant lit-
erature, and present future pandemic risks. Section 3 discusses the model, in-

1We elaborate on this issue in sub-section 2.3 below.



cluding the novel policies, which are further elaborated in online Appendix
A. Section 4 presents the calibration and the solution methodology. Section 5
presents the results. Section 6 explores the underlying mechanism. Section 7
examines the relation between the model planner solution and actual outcomes
in two U.S. states - NYS and Florida. Section 8 concludes.

2 Background

We briefly present key facts pertinent to the current analysis, the relevant parts
of the rapidly-growing literature in Economics on COVID19, and a short dis-
cussion of future risks.

2.1 Key Data Facts

We present U.S. data facts focusing on the variables that play a key role in our
analysis. We look at the entire U.S. and at the six biggest states, namely, Califor-
nia, Texas, Florida, New York, Pennsylvania, and Illinois, encompassing about
40% of the U.S. population. Panel a in Figure 1 shows data of a stringency in-
dex of lockdown restrictions and closures — school closings, workplace closings,
public event cancellations, closure of public transportation, public information
campaigns, internal movement restrictions, and international travel controls —
computed by the Blavatnik School of Government at the University of Oxford.
The figure shows the index, in 14-days MA terms, from late January 2020 to
August 2021; see the methodology in Hale et al (2020).

Figure 1

The emerging pattern shown by the figure is that, following a lag in re-
sponse after the February 2020 outbreaks, there was a fast rise in lockdown
measures in March 2020. Subsequently policy became more heterogenous and
more volatile across states and over time. We briefly summarize the main points
which can be seen in the figure:

In NYS (dashed orange line) restrictions were the strictest. Following their
imposition, there was very gradual release starting from May 2020, and more
rapid release from around March 2021.

California (dot dashed red line) had a broadly similar response to NYS (they
exhibit a 0.92 correlation). Release in NYS was slower till March 2021 and this
pattern was reversed in April 2021.

Pennsylvania (dot dashed blue line) is very similar to California, but went
even looser, and in the course of 2021 released faster.

Illinois (red dots line) kept the tightest measures longer, till late May 2020,
but then came down faster and looser than the afore-mentioned states. It re-
tightened in October 2020 but remained much looser than NYS. It went on a
gradual release in 2021, making the release faster from June.

Very different behavior was exhibited by the other two states: Texas (dashed
dot gray line) did not stay tight long, came down fast, to a much lower level of



restrictions, and tightened somewhat from July 2020. Beginning May 2021 it
loosened fast again. Florida (dashed green line) did stay with tight restrictions
longer than Texas, but then went on a long release period, beginning April 2020,
hastening the process in October. It achieved the lowest restrictions relative
to the other five states. It did some re-tightening at the turn of the year but
resumed fast release around April 2021.

Across these six states, the tightest restrictions were imposed in New York
State and the most loose ones in Florida. The biggest gap was in November 2020
with the Florida stringency index 55% of the NYS one. Volatility of the index
over the entire period is high, with a coefficient of variation ranging between
0.3and 0.4.

In terms of the entire U.S. (black line), relatively high restrictions were im-
posed in March 2020. They fluctuated around this level for a year. Since March
2021 there has been a release process, albeit a non-monotone one.

Panel b in Figure 1 shows GDP growth for the U.S. and the same six states
from 2019:Q1 to 2021:Q1. The figure shows GDP growth measured in terms
of the current quarter relative to the same quarter in the preceding year. In
2019 these rates for the entire U.S. ranged roughly between 2% and 2.3%. In
2020 these rates were 0.3%, —9%, —2.9% and —2.4%. In 2021:Q1 it was 0.4%. In
terms of the states, four states had negative growth already in 2020 Q1; by Q2
all were in decline, with rates ranging from—8% to —12%; in Q3 this decline
softened to a range of —2% to —6% and in Q4 to a range of —2% to —5%. In Q1
of 2021 the range was —2% to 1%.

Panel c in Figure 1 puts together data on deaths and output loss in the pe-
riod March 2020 to July 2021. Output loss is imputed on the basis of actual em-
ployment data and counterfactual employment projections; the details of the
imputation procedure are described in online Appendix B. The main feature
of panel c is the very diverse experience of the different states. First, within the
group of states excluding New York State, there seems to be a trade-off between
output loss and cumulative death (see the dotted, linear line in the figure). This
trade-off is broadly consistent with the interventions stringency dynamics pre-
sented in panel a of Figure 1, with states that had short-lived or less stringent
measures losing less output but faring worse in terms of the death toll. The
states are not perfectly aligned along the line, reflecting background variation
across locations in terms of population density, healthcare quality, age compo-
sition, occupational composition, propensity to comply with restrictions, and
numerous other factors. Second, the experience of New York State is strikingly
different, dwarfing the outcomes in the other states on both dimensions. Our
analysis sheds light on how such different results arise, deriving the outcomes
depicted on the figure axes as endogenous variables. We show that the diversity
of scenarios depend on the available policy instruments and on the properties
of the disease and the economy. We also show how outcomes can improve sig-
nificantly when the timing of the interventions is set optimally, and particularly
so when using the cyclical policy instruments, that are at the focal point of our
normative analysis.



Panel d gives a data perspective on the employment decline and subsequent
recovery. It shows the employment-population ratio taken from FRED, reach-
ing a low of 51% in April 2020, relative to the 61% ratio prior to the pandemic.

2.2 The Literature

There has been an explosion of research in Economics on COVID19. Reviews
and discussions are provided by Avery, Bossert, Clark, Ellison, and Ellison
(2020), Baqaee, Farhi, Mina, and Stock (2020), Atkeson (2021a), and Brodeur,
Gray, Islam, and Bhuiyan (2021). Two kinds of papers are relevant for the cur-
rent analysis.

One is work using the concept of an optimizing planner. It examines the
health-related losses due to the pandemic in economic terms and the economic
consequences of public health policy. An objective function is defined, with
values taking into account output losses and the value of statistical life. Thus,
tradeoffs are measured and alternative policies are evaluated. The planner con-
straints include, inter alia, disease dynamics typically examined within the SIR
epidemiological model. Prominent contributions include Abel and Panageas
(2021), Acemoglu, Chernozhukov, Werning, and Whinston (2021), Alvarez, Ar-
gente, and Lippi (2021), Farboodi, Jarosch, and Shimer (2021), and Jones, Philip-
pon, and Venkateswaran (2021).

The second kind of work includes papers which tie macroeconomic dy-
namics to the epidemiological dynamics of the SIR model. These models posit
that individual rational economic behavior has two-way connections with dis-
ease transmission. The latter issue was explored long before COVID19; promi-
nent examples include Geoffard and Philipson (1996), Fenichel et al (2011), and
Fenichel (2013) and the surveys by Philipson (2000) and Verelst, Lander, and
Beutels (2016). In an important contribution, Greenwood, Kircher, Santos, and
Tertilt (2019) explore a rational search model in the presence of HIV. They find
that the efficacy of public policy depends upon the induced behavioral changes
and equilibrium effects. Notable current COVID-related contributions include
Atkeson, Kopecky, and Zha (2021), Eichenbaum, Rebelo, and Trabandt (2021),
Garibaldi, Moen, and Pissarides (2020), and Krueger, Uhlig, and Xie (2020). An
elaborate analysis, emphasizing heterogeneous agents, is offered by Kaplan,
Moll, and Violante (2020) using the SIRD model.

It should be noted that in the epidemiological literature, pandemic or epi-
demic management is a key topic of study. Inter alia, it deals with the measure-
ment of key parameters needed for policy, such as the reproduction parameter,
which are also at the focus of the current paper. Prominent examples of such
studies, pre-COVID19, include Mills, Robins, and Lipsitch (2004) and Wallinga,
van Boven, and Lipsitch (2010).

2.3 Future Risks

The set of epidemics since 1980 is quite large and includes, inter alia, HIV/AIDS,
SARS, H5N1, Ebola, H7N9, HIN1, Dengue fever, and Zika (see Jones et al



(2008)). Just since the year 2000 there have been more than ten major viral dis-
ease epidemics or pandemics in human populations, caused by coronavirus,
alphavirus, myxovirus, filovirus, norovirus and flavivirus family members (see
Meganck and Baric (2021)).

Looking forward, the COVID19 pandemic is unlikely to be the last one. Part
of the March 15, 2021 issue of Nature Medicine is devoted to discussing future
threats and lessons to be drawn from COVID19. Key forecasted threats include
the following (see May (2021) in that issue and references therein; Meganck and
Baric (2021) discuss specific threats (on pages 402-403)).

(i) The US Centers for Disease Control and Prevention lists seven coron-
aviruses that can infect humans and overall there are hundreds of coronaviruses.
Some of these are much more deadly than SARS-CoV-2. For example, MERS,
while not easily transmitted between people, has an infection fatality rate of
350/0,'

(ii) Influenza viral infections, which have caused deadly outbreaks in the
past, most notably, the 1918-1919 influenza pandemic which has killed an es-
timated 50 million people, and the 1957-1958 influenza pandemic, which has
killed about 1 million;

(iif) Other zoonotic threats, such as viral haemorrhagic fevers like Ebola,
Marburg, Lassa fever, and yellow fever. Some of these infections are far more
deadly than infection with SARS-CoV-2. On average, the Ebola virus kills about
half of the people it infects, and some outbreaks killed 90% of the people in-
fected. Over than a decade ago, scientists reported that more than 70% of new
pathogens come from animals.

The June 2021 report of a high level G20 panel®states that “We are in an age
of pandemics.... There is every likelihood that the next pandemic will come
within a decade — arising from a novel influenza strain, another coronavirus,
or one of several other dangerous pathogens. Its impact on human health and
the global economy could be even more profound than that of COVID-19.”

3 The Model

We model an optimizing social planner who operates within a SEIR model of
the epidemic and a model of the macroeconomy. We elaborate on the novel
policy strategies based on time restrictions.

3.1 The Evolution of the Epidemic

We analyze the evolution of the epidemic in two complementary blocks — infec-
tion transmission and clinical progression.

2See the report of the High Level Independent Panel on Financing the Global Commons for
Pandemic Preparedness and Response at https:/ /pandemic-financing.org/report/foreword/



3.1.1 The Infections Transmission Block

The infections transmission block is characterized by the SEIR Erlang model,
reflecting the epidemiological properties of COVID19. Before contacting the
disease for the first time, a person is Susceptible (S). Once a person gets in-
fected, disease progression is split into distinct compartments — Exposed (E),
Infectious (I), and Resolved (R). We denote by B the infections transmission
rate, o, the transition rate from E to I, and v, the transition rate from I to R.
An infected individual spends some time in each compartment before moving
on to the next one. The person is infectious only when in the I compartment,
but not when residing in the preceding E compartment. The time durations
spent in the E and I compartments are known as the latent and infectious pe-
riods, respectively. Once people move to the Resolved stage, they no longer
participate in disease transmission. With Poisson transition rates between com-
partments, the residence times in each of them are distributed exponentially,
and thus have zero mode. Exponential distributions capture the mean but not
the mode of the biologically accurate distributions of residence times, because
in reality what most people spend in each stage is close to the mean of the dis-
tribution, rather than zero. Therefore, we split the E and I compartments into
two sub-compartments and double the rate of transition. Now, the latent and
infectious periods are the sum of the time spent in the E; and E; or I; and I,
sub-compartments, respectively. Their distribution is the sum of exponentially
distributed random variables, a special case of the Gamma distribution, known
as the Erlang distribution. The means of Erlang distributions remain 1/¢ and
1/, but the modes are now near the means, as they should be. In the remain-
der of the paper we shall refer to this model as the SEIR model, without noting
the number of sub-compartments.
Graphically, this block is presented in panel a of Figure 2.

Figure 2

The following equations describe this block. Throughout, all stock variables
are expressed as a fraction of the population.

S(t) —B(t) - (L(t) + L(t)) - S(t) 1)
Ei(t) = B(t) - (L(t) + L(t))-S(t) —20E;(t) ()
Ex(t) = 20Ei(t) —20E(t) 3)
L(t) = 20Ey(t) —2vL(t) 4)
L(t) = 29L(t) —2vL(t) ®)
R(t) 2vL(t) (6)

3The model is essentially based on the seminal contribution of Kermack and McKendrick
(1927). Its present form is discussed in Champredon, Dushoff, and Earn (2018). See Bar-On,
Baron, Cornfeld, Milo and Yashiv (2021) for a more detailed analysis, where we explain the need
for the two complementary model blocs.
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An important parameter is the reproduction number R;, which is the aver-
age number of people infected by a person, and is given by:

B(t)
Ri ) 7)
We use R for the reproduction number at date t and denote the basic re-
production number by R at the initial stage, when S(0) = 1. Beyond the initial
t = 0, our formulation will allow for R to be affected by policy and by rational
individual behavior, as elaborated below in sub-section 4.1. We shall also be
discussing the effective reproduction number, defined as:

Re = S(H)Ry 8)

3.1.2 The Clinical Block

The clinical block describes the clinical progression of the disease and the pro-
gression of new cases through the healthcare system, depending on the devel-
opment and severity of symptoms. We postulate the following. Once infected,
a person enters an incubation period, a P state, during which there are no
symptoms, lasting for 1/60p on average. Following it, a person either remains
asymptomatic (O) or develops symptoms (M). Denote the share of asymp-
tomatic cases by 7. The others (1 — 1 ) develop symptoms, and with probability
¢ are hospitalized (H). A given share 7t of patients become critically ill (denoted
X), i.e., develop conditions requiring transition to ICU. Following the literature
(see, for example, Kaplan, Moll and Violante (2020) and Brotherhood, Kircher,
Santos, and Tertilt (2021)), we specify the death probability in this critical state
X as:

1(X(t) > X) - (X(t) — X)

5(X(t),Y) =01+ X(t)

©)

where X denotes ICU capacity and I is the indicator function. The reasoning
is as follows. When there is no breach of ICU capacity, the death probability
is given by §;. Whenever there is an overflow, I(X(t) > X) = 1, the death
probability increases with the risk that a patient will not be provided ICU care
when needed. The underlying assumption is that the allocation to ICU is ran-
dom among all patients in need of it, so the risk to be left out of ICU (for a given

XO-X. At the limit, the death probability 6(X(t) > X, X)

patient) is given by
is given by &1 + do.
At any stage, a person may recover (C). The clinical block is represented
graphically in panel b of Figure 2.
The analytical description of the symptomatic branch is:

11



P(t) = B(t)- (L(t) + 1(t)) - S(t) — 0p - P(t) (10)
M(t) = (1—1n)-0p-P(t) —0n- M(t) (11)
H(t) = ¢-0m-M(t)—60m-H() (12)
X(t) = m-0y-H(t) —0x-X(t) (13)
D(t) = &(X(t)) 0x - X(t) (14)

The parameters 0p, 0y, 01, and Ox relate to the average time that passes be-
tween the stages of infection, symptoms onset, hospitalization, ICU admission,
and death, respectively.

Note that a given person moves through the two blocks simultaneously.
They relate to two timescales, the infectiousness profile and the clinical pro-
gression, which develop in parallel. Each of the blocks characterizes different
properties of an infection case: one identifies whether a given person is infec-
tious and the other identifies the severity of the disease (whether one needs
hospitalization, for example). Thus, a person might be infectious (stage I of the
infection transmission block) and at the same time still show no symptoms, i.e.,
be in stage P, the incubation period, of the clinical block. Similarly, a person
may no longer be infectious (stage R of the infection transmission block) but
still be hospitalized (stage H of the clinical block).

3.2 The Economy

The economy is described as follows. We use a linear production technology:

Y(t) = AN(t) (15)

where A is technology and other inputs and N(t) is employment. We normalize
steady state output to unity:

Y9 =1

During COVID19 we posit that the number of people who can work daily,
N(t), is reduced relative to the steady-state level N°° and is given by:

N(t) = N% - p- (1= D(t) = X(t) — H(t) — pM(t)) (16)

where 0 < p < 1is the fraction able to work given current policy restrictions,
and 0 < ¢ < 1 is the fraction of people with symptoms who do not work. If
¢ = 1, anyone who develops symptoms self-isolates immediately and does not
work.

In the planner problem below, the flow loss of output is thus given by:

N(t)

1= NSS

=1—p-(1-D(t) = X(t) — H(t) — ¢M(t))

12



3.3 Policy Based on Time Restrictions

The novel policy, pertaining to the entire population, was introduced in Karin et
al (2020), where its epidemiological implications are analyzed extensively. Fol-
lowing an initial lockdown, move to a regime of k days of work and 14 — k days
of lockdown, every 14 days. On work days, people are released from lockdown
with strict hygiene and physical distancing measures on the same k weekdays
for everyone. On lockdown days, people are kept away from work places as
well as from other public spaces. Epidemiological measures need to be used
throughout, including rapid testing, contact isolation, and compartmentaliza-
tion of workplaces. Table 1 offers a visual summary.*

Table 1

Epidemic dynamics using these policies are discussed in detail below, where
they are depicted graphically in Figures 4 and 5 (see Section 5).

The rationale for the policy is as follows. Cyclical strategies reduce the av-
erage value of the reproduction parameter — which will be shown below to
capture the progress of the disease — through two effects: time-restrictions and
anti-phasing.

The time-restrictions effect is a reduction in the time T that an infectious per-
son is in contact with many others, compared to the situation with no lock-
down. For example, a 4-day work, 10-day lockdown cycle (k = 4) reduces T
to ;T ~ 0.3T. The anti-phasing effect uses the timescales of the virus against
itself. Most infected people are close to peak infectiousness for about 3-5 days,
beginning after a latent period of about 3 days (on average) after exposure. A
proper work-lockdown cycle, such as a 4-work 10-lockdown schedule, allows
most of those infected during work days to reach maximal infectiousness dur-
ing lockdown, thus avoid infecting many others. Those with significant symp-
toms can be infectious for longer, but remain hospitalized, isolated, or quar-
antined along with their household members, preventing secondary infections
outside the household.

As Table 1 shows, we only consider k < 8 in our analysis of the cyclical
strategies. This is because higher values of k imply shorter periods of lock-
downs, for example, locking only on weekends. Though similar lockdown poli-
cies have been implemented (for example, in India), they do not line up with
the epidemiological rationale of the cyclical policies. Furthermore, we find that,
in the U.S. context, such extremely open policy tools are hardly consistent with
a policy of efficient epidemic suppression. As noted, online Appendix A pro-
vides further details.

3.4 The Planner Loss Function

The planner is concerned by output loss and by loss of life. The former loss
is due to employment falling below steady state levels due to lockdowns. The

4 All strategies respect regular weekends, facilitating application.
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latter loss is due to deaths generated by the epidemic, which depend on ICU
capacity. The problem is thus formulated as follows:

Ty YSS

To, T, T2
0
17)
subject to equations (1)-(16).
The loss function V is minimized in PDV terms over the infinite horizon,

where r is the interest rate, expressing time preference. The loss function in-
SS

%/

ployment N(t) relative to steady state N°°,°and the value (with parameter x) of

cludes both lost (steady state) output per worker due to a decline in em-

lost life, where D(t) denotes fatalities flow as a fraction of the population. The
parameter x reflects estimates of the Value of Statistical Life in steady state out-
put per capita terms and is defined and discussed in sub-section 4.2 below. The
term of lost life is affected by the breach of ICU (see equations (9) and (14)). The
expression f(Ty) denotes the probability distribution function of the availabil-
ity of a vaccine at time Ty. We assume that following vaccine arrival, the pool
of susceptibles drops to zero, so that the epidemic stops growing. We elaborate
on f(Ty) in the next sub-section. Given each cyclical strategy k, the planner
chooses the optimal intervention timing: Ty lockdown of the economy; T; im-
plementation of a cyclical strategy; T release of the economy. It is important to
note that we constrain the planner possibilities here for tractability. The bene-
tits of the cyclical policy tools that we are thus able to find are likely to mark a
lower bound of their true advantage over real-world strategies. Note, too, that
when we introduce benchmark policies below, in those we shall not constrain
the planner in a similar way.

After time Ty, there is a residual cost due to death toll Rp(Ty) and output
loss Ry(Ty), which accompany the decline of the epidemic. These terms are
defined as follows:

RDY(:;Y;V) =x-01- (X(Ty)+m-H(Ty) - & (M(Ty) + (1 —1) - P(Ty)))) eIy

the expected number of people who will die after Ty

(18)

. . SS
5As we have assumed a linear production functon, % = %

14

minV = 7 F(Ty)- /e*ff : <NSS : (NSS - N(t)) - YSS. D(t)> dt + Rp(Ty) + Ry(Ty)
Ty=0



Ty+g,:

Ry(Tv) -
e = ¢ M(Ty)+ (1 —y)-P(Ty)- [ e+ (19)
Ty
the expected number of people not able to work
out of symptomatic
Ty -+
(H(Ty) + & (M(Ty) + (1= ) - P(TV))) [ erar+
the expected number of people who will be hospitalized after 1, TV
Tv+ %

(X(Ty) + 7 (H(Ty) + & (M(Ty) + (1= ) - P(T))) - [ e d+

the expected number of people who will be in ICU after 7, v

o]

1+ (X(Ty) + 70 (H(Ty) + & ((M(Ty) + (1= 1) - P(TV))))) - [edt

the expected number of people who will die after T Tv

3.5 Modelling Vaccine Arrival Time

The term f(Ty) is the probability distribution function of the availability of a
vaccine at time Ty. This is an important term as it sets the horizon for the
problem, acting as a hazard rate for leaving the state of the pandemic. It is an
expression of the essential risk and uncertainty embodied in the planner prob-
lem. Note that were we to model an arrival time known with certainty, not
only would an important real world aspect be removed, but such modelling
might create an artefact in the optimal plan. The planner may enable an out-
break shortly before vaccine arrival, relying on the vaccine to eradicate it. Such
a plan is not robust to delays in the arrival time. Relative to the interest rate r,
expressing time preference, f(Ty) plays the major quantitative role in discount-
ing future streams.® We empirically examine two alternative distributions for
f(Tv).

The benchmark distribution is the Gumbel distribution, which use is justi-
tied by the following logic. We assume that the arrival of the vaccine is a result
of simultaneous competition among many firms. The time of arrival is the min-
imum development time across these firms.” The distribution of arrival time
is then well approximated by a Gumbel distribution (see Kotz and Nadarajah
(2000)), which is a member of the family of extreme value distributions. Specifi-
cally, itis used for modeling the minimum of a sample from many distributions,

6The constancy of » makes the planner problem time-consistent, as shown by Halevy (2005).

7At the time of writing, September 2021, three vaccines have actually been ap-
proved by the FDA in the U.S. (see https://www.fda.gov/emergency-preparedness-and-
response/coronavirus-disease-2019-covid-19/janssen-covid-19-vaccine) and, additionally, four
other vaccines are widely used globally. Over 110 vaccines are in clinical trials, and over 180 are
in pre-clinical evaluations (see https://www.who.int/publications/m/item/draft-landscape-
of-covid-19-candidate-vaccines).
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including exponential, logistic, and normal distributions. Under mild regular-
ity conditions, it is suitable to be a model for a sample minimum even when
the distributions from which the sample is drawn are unknown. In our set-
ting, we remain agnostic about the distributions of vaccine development time
by individual firms.

In terms of the model, Ty refers to the time of sufficient vaccination. With
logistics, production times, gradual take-up rates, etc. an ex-ante expected 540
days seems reasonable relative to the March 2020 start date of the epidemic in
the U.S. 8This number (540 days) is also the one used by Alvarez, Argente, and
Lippi (2021) and Farboodi, Jarosch, and Shimer (2021), and is the middle of the
range in Acemoglu, Chernozhukov, Werning, and Whinston (2021).

The cumulative distribution function G (x) of a Gumbel distribution is de-
fined over the real numbers and parametrized by a location parameter - and
a scale parameter o :

G(xpg,06) =1—exp (— exp <X_HG>> (20)

e

We anchor the distribution’s parameters (y, o), by positing that the mean
of the distribution is 540 days, and that the probability of sufficient vaccination
before day 360 is only 1%. These assumptions engender two linear equations:

E(Gumbel (us,06)) = pg— EulerGamma - o¢ = 540
Q(Gumbel (pg,06),q) = Mg +log(—log(l—q))-oc =360

where E is the mean and Q is the quantile function. Targeting a mean of 540
and Q(g = 0.01) = 360 leads to the solution of yi; = 565.83,0¢ = 44.74.

As an alternative we examine the exponential distribution, reflecting a Pois-
son process for vaccine arrival, at a fixed rate for any given day. This has been
used by Acemoglu, Chernozhukov, Werning, and Whinston (2021), Alvarez,
Argente, and Lippi (2021), Farboodi, Jarosch, and Shimer (2021), and Jones,
Philippon, and Venkateswaran (2021). Its drawback is that it has a mode of
zero, which is implausible in the case of vaccine development. We calibrate the
parameter of the exponential distribution to 1/540, so that it has the same mean
waiting time of 540 days as in Gumbel distribution.

Figure 3 illustrates the resulting calibrated probability density functions.
The Gumbel is shown by the solid line and the exponential by the dashed line.

Figure 3

The Gumbel distribution has an asymmetric bell-shaped form, with mode
around 540 days, and a rather long left tail. The density drops quite fast after
540 days. The exponential distribution has the desired mean expected waiting
time, 540 days, but the implied probability density is strictly decreasing, imply-
ing that the first day of the epidemic is the most likely date of vaccine devel-
opment. This property of the distribution is highly counter-intuitive. However,

8We have used 540 days in work on simulating this model since the summer of 2020. Actual
developments turned out broadly consistent with this number.
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assuming the exponential distribution is convenient because it fits in smoothly
with the exponential discount factor which is frequently used in dynamic opti-
mization problems in Economics.

3.6 Benchmarks

We shall compare the results of simulating the model, calibrated to the U.S.
economy, to the following benchmarks:

(i) and (ii) The polar cases of no policy intervention (i.e., no lockdown) or
full lockdown till vaccine arrival.

(iif) Optimal lockdown; this is essentially the case of k = 0.

(iv) A theoretical path trying to mimic real-world policy by re-interpreting
the planner problem as choosing thresholds for lockdown policy in terms of
the critically ill, X. The first threshold defines a level X, whereby if X; > Xj an
initial lockdown is imposed. Subsequently, a second threshold defines a level
X1 whereby if X; < Xj lockdown is released. Finally, a third threshold defines a
level X, whereby if X; > X, lockdown is re-imposed. The planner chooses the
three thresholds optimally. Note that this strategy leads to recurrent lockdown
and release policies, and, that the planner here is not as constrained as in the
case of the cyclical strategies, when we allowed for only three optimal points in
time to be chosen.

In Section 7 we compare the model to the actual experience of the states of
New York and Florida.

4 Calibration and Solution Methodology

At first, we calibrate the model to fit the U.S. economy, which — as seen in Sec-
tion 2 above — was badly hit by COVID19. Throughout we work in daily terms.
In Section 7, we shall discuss the methodology and calibration values used for
the analysis of two specific states in the U.S.

4.1 Calibration of the Epidemiological Model

In Table 2, we present the relevant parameter values for the two blocks, where
we rely on sources in the epidemiological and medical literatures published in
Science, Nature, the Lancet, and JAMA, as detailed in the table’s notes.

Table 2

4.1.1 The Infection Transmission Block

For the duration numbers of the latency period (1/0) and the infectiousness
period (1/) we rely on studies that have appeared early on in the COVID19
pandemic and were published in Science; see Tian et al (2020) and Li et al
(2020). These studies were co-written by universlty researchers from China (Ts-
inghua, Hong Kong, and others), from the U.S. (Harvard, Princeton, Columbia,
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Penn State, UC Davis, and NIH), and from the U.K. (Imperial, Oxford, and
Southampton). Their findings are confirmed by studies on infector-infectee
pairs; see He et al. (2020) and Ma et al. (2020). A number of papers (Tindale
et al (2020), Kong et al (2020), and Ren (2021)) highlight the fact that a signifi-
cant part of disease transmission happens before the onset of symptoms. This
is implies that the latent period is shorter than the incubation period, which
is usually 5-6 days (see the review in Bar-On et al (2020) and the references
therein). The latter appears within the clinical block to which we turn now.

4.1.2 The Clinical Block.

The value for the duration till death is given by é—i— % + é + % and is set

at 19.5 days.” We use X = % = 1.8 x 107* based on an estimate of

58,094 ICU beds by the Harvard Global Health Institute.l? The implied Infec-
tion Fatality Rate (IFR) is given by IFR = ¢ - 7 - 7 - 61. Estimates of the Impe-
rial College COVID19 Response Team (2020) and the meta-analysis findings of
Meyerowitz-Katz and Merone (2020) put IFR at 0.8%.!! Using this number and
the numbers for ¢, 77, and # in Table 2, we derive §; = 0.5. We then calibrate
d = 0.5 to capture the fact that, with extreme loads on the public health sys-
tem, the probability to die increases to 1 for each patient in need of an ICU bed
(see the reasoning in sub-section 3.1 above).

4.1.3 Dynamics of the Reproduction Parameter

The path assumed for the reproduction parameter merits discussion. The idea
is to model a time-varying parameter, R;. The reason is that R; reflects both
rational individual behavior and the effects of suppression policy. We take into
account that individuals adjust to the new environment and behave differently,
both with and without government interventions.!? In particular, as the epi-
demic unfolds, people become increasingly aware of the risks and adjust their
behavior. This adjustment is manifested in avoiding or reducing social contact
and taking precautions, such as wearing masks. These changes happen in part
as a direct result of government NPIs and in part as a voluntary response. It
is a rational choice to adopt new norms of behavior, even when restrictions by
the government are weakened or removed. As a result, the speed of disease
transmission declines relative to its start.

9See CDC estimates at https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-
scenarios.html#definitions Table 2.

10See https:/ /globalepidemics.org/our-data/hospital-capacity /

HThese authors state: “Based on a systematic review and meta-analysis of published evidence
on COVID-19 until July 2020, the IFR of the disease across populations is 0.68% (0.53%—0.82%).
However, due to very high heterogeneity in the meta-analysis, it is difficult to know if this repre-
sents a completely unbiased point estimate. It is likely that, due to age and perhaps underlying
comorbidities in the population, different places will experience different IFRs due to the disease.
Given issues with mortality recording, it is also likely that this represents an underestimate of
the true IFR figure.”

12These mechanisms are explored in the second strand of literature discussed in sub-section
2.2 above.
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The way we proceed is to model the time variation in R; by relying on data
estimates as follows.
(i) Initial level. We set

Ro = 2.50 (1)

We get the value of 2.50 in equation (21) using the methodology of Fernandez-
Villaverde and Jones (2020), adapted to our model!3, and daily death flow data
taken from Johns Hopkins University CSSE (2020). This yields estimates of R
values of 2.67 on March 17, 2020 and 2.48 on March 18, 2020. This is the re-
production number during the initial phase of the epidemic, before significant
lockdowns were imposed in the U.S. 1

(ii) Subsequent values. To reflect the fact that over the course of the initial
outbreak and following it, individuals change their modes of behavior and eco-
nomic activity, including compliance with NPIs, we allow the reproduction
number in subsequent periods to be lower than the initial Ro. We posit that
there is a value of R; during times of lockdown, to be denoted R, and another
value at other times, denoted Ry (“work”). Both are lower than R to take into
account the fact that individuals have adjusted to the new environment and are
taking more precautions. When lockdowns are in place, policy and individual
responses together engender R < Ry.

For their calibration, we rely on two sets of estimates.

First, Karin et al (2020) review the literature and estimate values for R and
Rw."> These relate to developed countries with a population density of over
100 people per square km. Figure 4 reports their estimates.

Figure 4

Looking at the black points in the figure, the value of 1.50 for Ry is the
upper bound of estimates; the estimates for R range from 0.6 to 0.9 with a
value of 0.80 as the estimate for NYC.

Second, we use the U.S. estimates of Fernandez-Villaverde and Jones (2020)
for the biggest 15 states in the U.S., covering 65% of the U.S. population!® We
look at the minimal and maximal values of the estimated R; series from April
1, 2020 till September 30, 2020. According to the Oxford Stringency Index, dis-
cussed in sub-section 2.1 above, this period covers lockdowns and release in
all of the states, at different points in time. These R; values are indicative of
R and Rw: R cannot be lower than the minimal data value, and Ry cannot

13Gee online Appendix C for details.

14 As noted by Farboodi et al. (2020), social activity and population mobility started declining
even before that. Therefore, it is conceivable that prior to mid March the reproduction number
was even higher. However, due to very incomplete and noisy data on early COVID19 fatalities
it is not possible to credibly infer the reproduction number in the US before mid March (see, for
example, the very wide confidence intervals in Li et al., 2020)

15The full details of their analysis, including references and the code, are found at:
www.github.com/milo-lab/

16Due to insuffiicent estimates, we exclude the state of New Jersey. As noted, these authors
infer R; from daily death flow data taken from Johns Hopkins University CSSE (2020).
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be higher than the maximal data value. The median (average) minimal value
across the 15 states is 0.68 (0.61) and the median (average) maximal value across
the 15 states is 1.42 (1.49).

Given these two sets of estimates we posit values that are conservative, in
the sense of being biased against the cyclical strategies, i.e., R and Ry that are
relatively high:

_[1.50 Rw, work
Re= {0.80 RL,lockdown} (22)

(iii) Dynamics of the reproduction parameter. To capture the gradual nature
of learning and adjustment of individual behavior, we posit that a certain mini-
mal time should pass under lockdown before the reproduction number declines
from its initial value Ry to Ry. To capture this time span, we look at two
sources.

a. Using the Fernandez-Villaverde and Jones (2020) methodology applied to
our model, as discussed in online Appendix C, we get that it takes 8 days to
get from R; = 2.48 to Ry = 1.50. This decline took place in the third week of
March, when lockdowns only started to unfold. Thus, we interpret this decline
mainly as rational adjustment of behavior.

b. We use Imperial College COVID-19 Response Team (2020) estimates of R;
paths for U.S. states since the start of the epidemic.!”We obtain two alternative
estimates for the average speed of the R; decline, 8 or 19 days.

Again, we adopt a conservative calibration and assume that 14 days must
pass before R; declines from 2.50 to 1.50.When we examine two specific U.S.
states in Section 7, we revisit the computation of R;.

4.2 Calibration of the Economic Model

Discounting. We posit a 4% annual discount rate for the planner (r = 0.04),
converted to daily terms.

The value of ¢. As in Glover, Heathcote, Krueger, and Rios-Rull (2020), we
assume that anyone who has any symptoms self-isolates and does not work
@=1).

The value of p. We use a number of sources to determine p, the fraction of
people working out of N°>when in lockdown.

a. Panel d in Figure 1 shows BLS data on the U.S. employment-population
ratio. It implies the following for the most stringent lockdown, in April 2020:

_ N(t) 0513
P=Nss T o6t O
b. Studying remote work, Dingel and Neiman (2020) find that 37 percent
of jobs in the United States can be performed entirely at home, with significant

variation across cities and industries.

17We outline the procedure in online Appendix C.
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c. An Economic Policy Institute (EPI) analysis'® puts essential workers at
55,217, 845. February 2020 employment was 158, 759, 000; hence % = 0.35.

d. A McKinsey Global Institute analysis'® of all 804 occupations tracked by
the BLS (O*NET data) assign each one a vulnerability rating of low, medium, or
high. Low-vulnerability jobs are the essential ones, require no physical proxim-
ity to others, or are likely to guarantee pay even if workers are furloughed.
Medium-vulnerability jobs require workers to be in proximity to coworkers
but not the public; shutdowns affect 30 to 50 percent of these jobs. High-
vulnerability jobs are nonessential roles that involve exposure to the public;
shutdowns affect 70 to 90 percent of these jobs. This analysis estimates that
a nationwide shutdown could leave 44 million to 57 million jobs vulnerable.
Note that this analysis covers both remote work and essential workers. Hence
p=1— j2s5 =072t0p =1 — =255 = 0.64.

From this discussion a reasonable conjecture is that p € [0.65,0.80]; we take
p = 0.65 at the baseline; this value is consistent with values used by Kaplan,
Moll, and Violante (2020). Subsequently, we also examine the alternative value
p = 0.75.

Value of Statistical Life.

We compute the value of life as follows:

__ expected years remaining - value of statistical life per annum

YSS
POP

(23)

where POP is the population. As is well known, there is a wide set of estimates
for the Value of Statistical Life (VSL). Indeed, Hall, Jones, and Klenow (2020)
state that estimates of the VSL per annum range from $100,000 to $400, 000.
Greenstone and Nigam (2020) work with Environmental Protection Agency es-
timates of $11.5 million for the VSL for adults, in 2020 terms. This translates
into approximately $250, 000 per annum.

Taking the maximal value of the cited range of estimates, using the pre-
COVID19 GDP per capita at $65,430, and the fact that the COVID19 deceased
have an expected average of 14.1 years of life remaining (Hall, Jones, and Klenow
(2020)), this yields:

_ 14.1 % 400,000
T 65,430

In what follows we use a rounded number, x = 85, in the baseline case.
For a robustness check, we examine the following. A widely used value

. . lue of statistical lif . o
for annual VSL in per capita terms (V2¢O SRASER TEPELANUM ) 45 4 ywhich yields

X = 14.1%4 = 56.4. As mentioned, Greenstone and Nigam (2020) use an EPA-
based number, yielding x = 14'16?% = 14.1 ¥ 3.82 = 53.86, which is close. We
round this up to 60, and explore the latter as an alternative in sub-section 6.2

below.

=14.1%6.11 = 86.15 (24)

18G5ee https:/ /www.epi.org/blog/who-are-essential-workers-a-comprehensive-look-at-their-
wages-demographics-and-unionization-rates/

19Gee https:/ /www.mckinsey.com /industries/public-sector / our-insights / covid-19-and-jobs-
monitoring-the-us-impact-on-people-and-places
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4.3 Solution Methodology

To derive an optimal policy under each cyclical instrument, we use a numerical
solver in Mathematica (NDSolve, see Abell and Braselton (2016)).

We find the values of the control variables (Tp, T, T>) that minimize the
planner cost function in problem (17) by conducting a hierarchical search of
the three-dimensional control variables space. The restriction 0 < Tp < T7 <
T, < 730 is enforced throughout the search. In order to avoid the cost of
an exhaustive grid search at daily granularity, we start with a rough grid in
which Ty, Ty, T, are multiples of 16 and then refine it repeatedly. For each triplet
(To, T1, T2) on the current grid we solve the continuous time system of ODE
describing the stocks S(t), E1(t), Ex(t), 1 (), Ix(t), R(t) in the SEIR block as de-
scribed by equations (1)-(6) and the continuous time system of ODE describing
the stocks P(t), M(t), H(t), X(t), D(t) in the clinical block (equations (10)-(14))
given the policy regimes defined by (To, T1, T»), according to the calibration of
Table 2.

Note that the timing of interventions (Tp, T1, T>) and the number of open
days (k) in the cyclical strategy under consideration define the periods of time
in which specific reproduction numbers — Rg, R1, and Ry - are applicable.
Therefore, we solve the systems (1)-(6) and (10)-(14) separately for each time
period, given its relevant reproduction number. The stocks of infectious, criti-
cally ill, etc. at the endpoint of each time period serve as initial values for the
ODE system describing the dynamics during the subsequent time period.

We use the following steps:

(i) In the very first period, initial values are taken from an infection seed of
0.01% of the population (100 people per million). Within this seed, infectious
and latent subcompartments are initialized so as to be consistent with an initial
exponential growth rate of the disease; susceptibles (S(t)) form the rest of the
pool. The clinical block of the epidemiological model is initialized to 0 at t = 0.

(ii) Using the solution of the ODE system, a set of interpolated functions?’describing
the dynamics of all stocks S(t), E1(t), E2(t), I1(t), Ip(t), R(¢), P(t), M(t), H(t), X(t), D(t),
we are able to evaluate the planner’s objective (17), which is a function of these
stocks (through the cumulative deaths stock D(t) and the employment stock
N(t) as defined in (16)). We solve the system of ODE for each point (Ty, T1, T»)
on the current grid and identify the one for which the minimum of the objective
function is attained. We keep this point and all points that produce values of
the objective function within 20% of the minimal value. From these, we select
16 points that best span the control variable space. This is done by starting with
the set that contains only the minimum point. We then add to this set the point
that is the geometrically farthest from the set, and then the point that is second-
farthest, and so on, until 16 points are added to the set. If there are less than 16
points yielding the value of objective function within 20% of the minimal value
in the current step, we keep all of them for the next step.

(iii) The selected 16 grid points are the basis for the grid to be examined
in the next iteration of the minimization. We expand the base grid by adding

Dnterpolated functions are approximate functions which values are found by interpolation.
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more points such that each point (Ty, T1, T>) in the base grid is complemented
by 125 grid points located uniformly around it in a three-dimensional space.
The resulting grid is fed into the next iteration of the optimization procedure,
as described above. The process is repeated until minimum granularity of 1
day is reached and the grid cannot be further refined. The optimum is the
point (Ty, Ty, T>) on this grid, which is the most fine we get, with the lowest
value of the objective function.

(iv) Finally, we verify that the solution is robust to the initial values fed into
the optimization, and numerically ascertain that the above hierarchical proce-
dure yields solutions that are close to the optimum obtained using exhaustive
search.

The no intervention and full lockdown cases ((i) and (ii) in sub-section 3.6)
are solved similarly imposing (Tp = T3 = T, = Ty) and (Tp = O and T; =
T, = Ty), respectively. Optimal lockdown (case (iii) in sub-section 3.6) is found
by imposing the condition T; = T, and solving for (Ty, Ty, T»), as above. Fi-
nally, when solving the solution for optimal thresholds, (case (iv) in sub-section
3.6), for the three continuous control variables (Xp, X1, X2 ), we find the optimal
thresholds minimizing the planner cost by conducting an exhaustive hierarchi-
cal search of the control variables space, spanning the values from 0 to X over
a logarithmic discrete grid.

5 Results

We present the results for the baseline calibration of p = 0.65, x = 85, and
IFR = 0.8%. In the next section we shall explore some variations in these val-
ues.

The optimizing planner chooses how long to wait till first lockdown (Tp),
when to start implementing a cyclical strategy (T;), and when to release com-
pletely (T7), for each instrument, namely for each given k. Optimal timing is
based on probability-weighted scenarios for vaccine arrival over the horizon of
two years.?! In the simulations, vaccine arrival is actually realized on day 540,
at its arrival time in expectation using the afore-discussed Gumbel distribution.

We present the results for the four benchmarks discussed in sub-section 3.6
above and six values of the k strategies. Table 3 reports the planner’s optimal
timing Ty, T1, T», the resulting values of cost, V' (in annual PDV, GDP per annum
terms evaluated over two years), decomposed into Vy, the value of foregone
output and Vp, the value of lost life, and the cumulative number of dead, per 1
million people. Figures 4 and 5 show the time evolution of I 4 E and of X for six
selected strategies: three benchmarks (no intervention, optimal lockdown only,
and thresholds on X) and three cyclical strategies (k = 4, 6, 8).

Table 3 and Figures 5 and 6

2l According to the vaccine arrival time distribution that we assume, the probability that it will
take more than two years to introduce the vaccine is practically 0.
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In the graphs, initial lockdown is marked by purple, the cyclical phase by
blue, release by no color, and the post-vaccine arrival period by gray.??Table
3 and Figures 4 and 5 show that the results can be characterized as follows,
discussing first the cyclical tools.

(i) Cyclical strategies with low k (= 3,4,5,6,7) keep the epidemic under con-
trol and ICU capacity is not breached. For this case, the figures show the k = 4
and k = 6 strategies. In the infected (E + I) class (Figure 5) it can be seen that
there is a rise in the number of infected over time but it remains extremely low.
As can be seen in the X plot (Figure 6), the number of critically ill is hardly ap-
parent relative to the ICU constraint X. This happens as k is relatively low and
as the cyclical strategy is applied for a long time (blue region) following a quick
initial lockdown (purple region). These strategies lead to relatively low num-
bers of deceased, between (approximately) 15,000 and 200,000, much lower
than the actual number of deceased in the U.S. by September 2021. Total plan-
ner costs vary between 27% and 32% of annual GDP in PDV terms over two
years, coming mostly from the value of foregone output.

(ii) A cyclical strategy with high k (= 8) does not have the disease under con-
trol, as shown in the figures. There are two waves, whereby ICU capacity is
breached in the first one. Note the scale of infection, which is much higher than
in the preceding case. The initial lockdown (purple region) comes later, and the
cyclical strategy (blue region) does not last as long. It leads to a relatively high
number of deceased, approximately 750, 000. Total cost is 28% of annual GDP
in PDV terms over two years, coming mostly from the value of lost life.

The results for the four benchmarks discussed in sub-section 3.6 above and
reported in Table 3, to which we compare the afore-going cyclical policies, are
as follows.23 The first two are non-optimizing, extremal benchmarks.

(i) The no intervention case has the disease erupt, breach the ICU capacity
constraint X, and reach herd immunity (to be discussed in Section 6.1 below) at
S = 0.40 by day 53, after which the epidemic starts to decline by itself. It leads
to a high number of deceased — about 4.3 million people — and has a huge cost,
at 113% of annual GDP in PDV terms over two years, most of it coming from
the value of lost life (with V = 1.13 and Vp = 1.10).

(ii) The full lockdown case (not shown in the graphs) has the disease under
control as it entails an immediate lockdown, remaining in place until vaccine
arrival. It leads to a very low number of deceased, around 1,300 people, and
has a substantial cost, at 50% of annual GDP in PDV terms over two years,
coming from the value of foregone output (V = Vy = 0.50).

(iii) The case of optimal lockdown, (k = 0), marked “lockdown only” in the
graphs, implies that a cyclical strategy is de facto unavailable to the planner and
all the planner can do is optimally set the lockdown start and end dates. Un-

22Note that the graphs in Figures 4 and 5 have very different vertical scales, all in percent out
of the population. In Figure 4, the range of the graph in the case of no intervention, is between
0% and 25% while that of the k = 4 strategy is between 0% and 0.01%. The scales of the other
graphs are in between. In Figure 5 these ranges are 0% to 0.25% for no intervention and 0% to
0.018% for k = 4.

23While here we compare to theoretical benchmarks, note that in Section 7 below we directly
compare the model results to two actual U.S. cases - New York State and Florida
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like the full lockdown case, here the planner lets the epidemic erupt, breach the
ICU capacity constraint X, and only after 40 days locks for about three months.
Subsequently the planner releases for good; disease growth is extremely slow,
as the system gets close to herd immunity. The planner does not impose the
lockdown for longer because its economic costs are too high. This strategy ends
up with losses of 42% in annual GDP PDV terms, which is 8 percentage points
lower than in the full lockdown, non-optimizing case. Most of this cost reduc-
tion comes from the gain in production, which more than compensates (in GDP
terms) for the loss of value due to the substantial amount of deaths under this
scenario, amounting to about 1.3 million fatalities.

(iv) The thresholds policy case follows the policy rationale actually adopted in
many countries; the planner optimally chooses thresholds for lockdown policy
in terms of ICU hospitalizations, X. It keeps the epidemic under control and
ICU capacity is not breached. In the figures one sees low rates of infection and
a hardly discernible X series. The planner in this case is very cautious and locks
the economy early, far ahead of the point of an immediate threat to ICU capacity.
The disease develops in several consecutive waves that rise and fall as the plan-
ner switches between release and lockdowns. It leads to relatively low numbers
of deceased, around 70, 000 people. Given that the U.S. has exceeded this num-
ber by early May 2020, it must be the case that U.S. policymakers have not been
implementing this type of strategy optimally, or have been implementing some
other policy altogether. Total cost in this benchmark case is 34% of annual GDP
in PDV terms over two years, coming mostly from the value of foregone output
(with V = 0.34, Vy = 0.32).

Table 3 shows that the cyclical strategies entail much lower losses, as com-
pared to the benchmark cases, varying between 27% and 32% in annual GDP,
PDV terms.

6 Exploring Planner Policies

While the preceding section presented the baseline results, in this section we an-
alyze the mechanism and its implications. First we study the underlying mech-
anism, exploring the rationale for the planner optimal decisions (sub-section
6.1). Second, we evaluate the cyclical policies by comparing them to the alter-
native benchmark policies using a plot of the policy frontier (6.2). Finally, we
study variations in key parameters (6.3).

6.1 The Mechanism

To understand the underlying mechanism consider the following.
The progression of the epidemic can be classified according to the effective
reproduction number R, as follows:
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(i) When R, = 1, the population has reached herd immunity and an out-
break (i.e., a spurt of disease growth) is no longer possible, though susceptibles
still do get infected.

(ii) Below that, when R, < 1, the epidemic is suppressed and the number
of newly infected people declines with time.

(iif) When 1 < R, < 1.1, the epidemic is slow growing; its doubling time is
at least 6 weeks.

(iv) When R, > 1.1 there is an outbreak.?

Note that R, depends both on the current reproduction number R; and the
current fraction of susceptibles S(t), i.e., R, = R¢ - S(t), where R; reflects the
current intervention regime. A low effective R, is achieved either following an
extensive exposure of the population to the virus (a low S(t)), or by imposing
stringent restrictions to curb virus spread (low R;).

We can now formulate the outcomes of the optimal planning problem in
these terms. The outcomes presented in the preceding section basically follow
one of two basic paths.

Strong containment. This path implies that R, is kept below or around 1 al-
most throughout the planning period with stringent restrictions (low R;), while
preserving the pool of the susceptibles intact to a large extent (high S()). This
path requires strong suppression measures to be imposed for long periods of
time. These measures either reduce the epidemic or keep it growing at a very
slow pace. The costs of loss of output are high, but the death toll is low.

Weak containment. This path implies that the reduction in R, is obtained
by the depletion of the susceptibles pool (a low S(t)), while policy interven-
tions are loose or short-lived (resulting in a high R;). Since this path involves
less prolonged and more delayed interventions, it is cheaper in terms of loss
of output, while the ensuing death toll is inevitably high relative to the strong
containment path.

These two policy paths reflect the fundamental trade-off between economic
costs and death tolls in managing the epidemic. The resolution of the trade-
off, the optimal policy choice, depends on a number of factors: the extent to
which economic activity can be maintained in lockdowns, the fatality rate of
the virus, and the value of statistical life. Even more critically, it depends on
the type of policy instruments available to the planner. It turns out that when
cyclical strategies are in the toolkit, the fundamental trade-offs can be softened
in a way that allows achieving lower economic costs and/or lower death tolls,
while waiting for vaccine arrival.

A key point about the cyclical strategies is that they average out k working
days and (14 — k) lockdown days and therefore reduce R;. This approximation

241n this case
Re = RysSHI(t) =1

1
HI BN
s = =

2The demarcation value of 1.1 is arbitrary, but we find it to be useful for the current discussion.
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of the average R, to be denoted R, is given by:26

k-Rw+(14-k)-RL
~ 14 <

From equation (25), it is immediately clear that the tighter, low-k strategies
are more efficient in epidemic suppression as their reproduction number R, is
lower. Crucially, they can bring down the infection while not closing down the
economy completely. These strategies can be applied over long time horizons
and achieve the strong containment type of solution. The high-k strategies can
only be compatible with strong containment when applied after a prolonged
lockdown and for relatively short periods of time, not giving the epidemic
enough time to vastly grow. In online Appendix D we report the R, and S(t)
values associated with the different policies.

The low-k strategies (k = 3,4,5,6,7) are used to achieve strong containment,
where, by the time of vaccine arrival, no more than 7% of the population is ex-
posed to the virus. This is achieved by a very early lockdown phase followed
by an extremely prolonged cyclical stage, which lasts up to vaccine arrival in
most cases. Strong containment here is possible since the average reproduction
R, of these strategies is low, and so they achieve an effective R, below or near
unity, even though the pool of susceptibles remains largely intact. Within this
group, the most stringent strategies (k = 3,4) manage to bring down the dis-
ease. The less stringent strategies (k = 5,6,7) do not bring down the disease
but do not allow it to grow fast before the vaccine arrives. They also require a
longer initial lockdown. These dynamics can be seen in Figures 5 and 6 above.

The high-k strategy (k = 8) results in a weak containment solution. By the
time the vaccine arrives, almost 30% of the population gets the virus. This is
achieved by delaying the first lockdown by almost a month, and also by re-
moving all interventions relatively early. The dynamics feature two waves: an
initial eruption and its suppression with the first lockdown, and then another,
smaller wave, during the cyclical strategy phase. This second wave is moderate
because R, in the latter stage is low despite a high R, due to the depleted pool
of susceptibles. When the restrictions are lifted, the effective R, is so low that
there will be almost no disease growth. This, too, may be seen in Figures 5 and
6.

Ra(k) Rw (25)

6.2 The Policy Frontier

As discussed above, there are two major ways to deal with the epidemic: strong
and weak containment. The timing of interventions, the ensuing epidemic dy-
namics, and realized costs all depend on the instruments available to the plan-
ner. The trade-offs involved are most easily seen in a two-dimensional graph,
that maps the outcome obtained under each instrument on two axes — the death
toll per million people and the value of lost output in annual GDP terms. One
can trace out a policy frontier using this graphical representation. Panel a of

26The average here is not exactly a linear function of R", RFand so this is an approximation.
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Figure 7 presents this frontier. It does so for different values of k, ranging from
3 to 8, and for three different values of the value of life, x (60, 85, 100).

Figure 7

Panel a clearly shows that there exists a policy frontier. Note that for a large
segment, the frontier is almost linear. In this part, deaths rise and output loss
falls with an almost constant proportion, as the value of life, yx, falls. In the seg-
ments at the extremities it is almost vertical (on the left) and almost horizontal
(on the right). This means that in those parts there is no tradeoff. When deaths
are low, raising x just increases output loss without much effect on deaths;
when deaths are high, lowering x just increases them more, without much gain
in terms of output.

Panel b of the figure shows the frontier using just the baseline values, dis-
cussed in Section 4, i.e., with x = 85. It also shows the benchmark strategies,
discussed in sub-section 3.6, marked by a mash. The two extreme benchmarks
of locking the economy completely till vaccine arrival and not doing any inter-
vention are represented by two extreme points on the graph, with huge output
or death toll, respectively. The benchmark optimal lockdown policy (k = 0),
denoted “lockdown only,” lies above the frontier. Panel ¢ magnifies part of this
figure, showing that the thresholds strategy benchmark also lies above the fron-
tier.

In panels b and ¢, the cyclical policy plans trace out the frontier, conditional
on x = 85. The strategies marked in green follow strong containment policies.
Hence they have a relatively high cost of lost output and a moderate death toll.
These are low-k strategies with just a few days open each fortnight, and are
located on the upper-left part of the graph. The cyclical strategy marked in red
(k = 8) is not powerful enough to suppress the epidemic efficiently, as more
open days are allowed every fortnight and therefore containment is weak. This
strategy is located on the lower-right segment of the frontier, representing a
high death toll with moderate output losses.

The figure clearly shows that the use of cyclical strategies brings about a
very substantial improvement in outcomes relative to the two extremes of no
intervention or full lockdown (as also seen in the values reported in Table 3).
Compared to the optimal threshold strategy, the type of decision-making seen
in reality, the cyclical strategies provide significant improvement too. Using
Table 3 and Figure 6b, one can see that the k = 8 strategy provides some im-
provement in social welfare by lowering output loss. However this is done
at the price of a higher death toll. It is the low-k cyclical strategies, especially
k = 5,6 that provide for a much more significant improvement. They lower
output losses with small changes in the death toll, within a strong containment
solution.

Panel a of Table 4 presents model outcomes with the alternative value of
x = 60 as discussed above instead of the baseline case of y = 85.

Table 4
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Table 4a shows in numbers what is seen in panel a of Figure 7 graphically:
though the location of the frontier does not visibly change as x declines, the
points move to the lower-right corner, i.e., to the region of weak containment.
Even when armed with the most stringent instruments (k = 3 and k = 4), pre-
viously used to keep the disease under strict control, the planner now chooses
weak containment. This is so because the economic costs of these very restric-
tive strategies do not justify using them for prolonged suppression when life
is less valuable. Only the k = 5 cyclical strategy that is characterized by both
suppression efficiency and moderate output costs is still used to implement the
strong containment solution.

The trade-offs embodied in the frontier graph and the planner optimal choices
depend on the lockdown severity parameter p (the fraction of working in lock-
down) and on the infection fatality rate. We explore the sensitivity of outcomes
to these parameters next.

6.3 Parameter Variations

Panel d in Figure 7 and panel b in Table 4 present the results with a higher
p = 0.75, i.e., employment is at 75% of its steady state level during lockdown,
and, separately, with an alternative IFR value of 0.6%.

Higher p means output losses from lockdowns are less severe; thus the plan-
ner can aim for strong containment, which is now less costly. Hence the policy
frontier is to the left of the baseline frontier, and concentrated on the left hand
side of the graph. Even the weakest (high-k) instrument is now used for strong
containment, which is achieved by applying a very prolonged initial lockdown
followed by a short cyclical phase.

A lower fatality rate moves the frontier leftwards, to lower death tolls. This
shift is more pronounced at the lower-right end of the frontier, where weak
containment solutions are located. These solutions rely on high exposure of
the population to the disease. When the death probability declines, fatalities
drop significantly, and so the frontier moves perceptibly. Such solutions are
now optimal under a wider range of instruments. Facing a lower fatality rate,
the planner is more inclined to open more and thus reduce output costs, in
exchange for somewhat higher death tolls. In the strong containment solutions
located at the upper-left region of the frontier, exposure to the disease is low to
begin with. Even though the fatalities rate goes down, the decline in the death
toll is small in absolute terms.

As seen in panel b of Table 4, the advantage of the cyclical tools relative to
the benchmarks is preserved under these parameter variations.

6.4 Distributional Assumptions on Vaccine Arrival

The shape of the f(Ty) distribution also has implications for the outcomes of
optimal policy analysis. When we examine the alternative of the exponential
distribution, the optimal policy outcomes are usually worse than under the
Gumbel distribution. This is seen in Figure 8, which presents two policy fron-
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tiers.”’ The red dots form a frontier under the exponential distribution of f(Ty),
and the black dots form the frontier under the Gumbel distribution. It can be
seen that the red (exponential) frontier is shifted out relative to the black (Gum-
bel) frontier.

Figure 8

In particular, for all tools but for k = 0 (lockdown only), the death toll
under optimal policy based on the exponential distribution is higher than the
one under the Gumbel distributional assumption. Hence, the distributional
assumptions describing vaccine arrival uncertainty matter for policy analysis.
The Poisson arrival process is analytically convenient and captures the mean
forecasted vaccine development time. However, it has a non-plausible shape
of the waiting time distribution and results in excessive death tolls, when the
vaccine actually arrives, 1.5 years after the start of the epidemic.

7 The Cyclical Strategies vs Actual Experience

The cyclical strategies can be compared to actual real world experience. We
do so by simulating optimal plans under the cyclical strategies and compar-
ing them to a policy path based on the experience of the states of New York
and Florida. The choice of these two states is motivated by the fact that both
experienced high levels of the epidemic but very different dynamics.

7.1 Data and Methodology

We use daily death data.?®In both New York State and Florida, it spans 275 days,
from March to November 2020. This is the sum of confirmed and probable
deaths from COVID19. The death count is smoothed using a 7-day centered
moving average.

The methodology we use is as follows.

(i) Estimation of disease growth rates to obtain initial guesses of the repro-
duction number at various stages of the epidemic.

(ii) Using the estimated rates in (i) as starting values, estimation of the re-
production number at various stages of the epidemic by minimizing squared
deviations of the simulated series of daily deaths and the corresponding data
series,

(iif) Using the derived parameter values for simulation of the optimal cycli-
cal strategies and for simulation of the policy path based on actual experience.

In what follows we elaborate on these steps.

(i) Estimation of disease growth rates

27 As in the preceding policy permutations, we have derived optimal timing under a given
distributional assumption on the vaccine arrival time. We then implement Ty = 540.

BThe data are taken from COVID-19 Data Repository by the Center
for Systems Science and Engineering (CSSE) at Johns Hopkins University,
https://github.com/CSSEGISandData/COVID-19
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We use the following relations. At the start of the epidemic S(t) ~ 1. The
path of I(t) = I1(t) + Ix(t) is postulated to be:

I(t) =1(0)eM (26)
For the model in use, i.e., a SEIR model with 2 sub-compartments, A satis-

ties the following relation (using equation 4 in Wearing et al (2005)):

A4 +1)?

(1))

At later stages, as the amount of susceptibles declines, the effective repro-
duction number R, is given by

(27)

Re=S(t) Ry (28)

We estimate A, the growth rate of I(t), the infected, employing daily death
data. Using the values of v and ¢ from Table 2, we derive the value of R from
equation (27) for the initial outbreak period. We subsequently use equations
(27) and (28) to derive R, for the lockdown period.

To estimate A we run a Poisson (log-linear) regression as follows:

log (daily death count) = const + At (29)

We shall use Ag to denote A in the initial phase, and Ay (A1) to denote A in
the growth (decline) phase.

(ii) Derivation of parameter values.

In the case of NYS, which experienced one wave of the epidemic between
March and November 2020, to derive parameter values needed for the simula-
tions, we solve the following minimization problem:

tend
min /
T(),Tl,RO,RW,RL,TO t=0
where D,,, is the data death series and D(t) is the data death series solved
from our SEIR model; 7y is the time needed to adjust the death series to model

dynamics, given the duration from infection to death; lockdown is imposed
between Ty and T so thus

(D (t) - Dactuul (t - TO))z dt (30)

Ro t<Ty
R = Ri To<t<Th
Rw Ty <t

We solve the minimization problem by an exhaustive grid search, where
7o, To, T1 are positive integers, T; > Ty, and Ro, Rr, Rw are on a grid with 0.1
precision around the initial values. We use the calibrated values presented in
Table 2 above.? Initial values are derived in step (i) above. We thus derive the
control variables of problem (30), namely Ty, T1, Ro, Rw, RL, To-

29We use the same IFR as in Table 2, based on the findings of IHME COVID-19 Forecasting
Team (2021).
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In the case of Florida, which has experienced two waves between March and
November 2020, we are solving the problem, formalized in equation (31) below,
in a similar way, but with some modifications. Since deaths have peaked twice
in Florida over our sample period (in mid-April 2020 and at the end of July
2020), in order to capture disease dynamics we need more degrees of freedom
than just the start date and the end date of lockdown. We use the threshold
lockdown policy like the one presented in point iv of sub-section 3.6. Thus, we
assume that the planner blocks the first wave when the share of critically ill
patients crosses X jock- The planner then removes lockdown when the share of
critically ill drops below Xyelease- Finally, the planner locks for the second time
to suppress the second wave when the share of critically ill surpasses Xl,lockr
and releases again when this share drops below Xyelease-

Hence, the minimization problem is given by:

tend
: 2
~ ~ min / (D (t) - Dactual (t - TO)) dt (31)
XO,lockrXrelmse/Xl,luck/RO/RW/RL/TO =0

where lockdown is imposed when X > )?O,lock/ released when X < Xp/eps0, and
re-imposed when X > Xj ;. Now:

Ro initially

R - R N X > iO,lock for the first time (32)
Rw X < Xyelease (first lockdown is at least 14 days)
R X > Xl,lock

We derive the control variables of problem (31), namely iO,lockr X oloaser Xl,lock/ Ro, Rw, R, To.
(iii) Using the derived parameter values.
Using the derived values of Rg, Ry, R we simulate the optimal cyclical

strategies and actual experience. Note that we aim to account for the gradual

behavioral adjustments that take place after initial disease eruption (see sub-

section 4.1.3) and that the degree of lockdowns in the model does not vary over

time. Thus, the reproduction number in lockdown, R, is assumed to be the

same in all epidemic waves, though the effective reproduction number will of

course be different since the size of the Susceptible population changes across

waves.

7.2 Results

We first report the results with respect to growth dynamics and the reproduc-
tion parameter. We subsequently present the outcomes of the simulated optimal
strategies and compare them to actual experience.

7.2.1 Growth Dynamics and the Reproduction Parameter

In NYS the exponential growth rate Ag is estimated using equation (29) be-
tween March 11 and March 30, 2020 to be 0.23 with a 95% confidence interval of
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[0.22,0.25]. In the model, these values correspond to Ry = 3.17 [2.95,3.42]. The
exponential decline rate Ay, is estimated between April 8 and July 28, 2020 to be
—0.0456 with a 95% confidence interval of [—0.0464, —0.0447].

Our procedure, which was elaborated in sub-section 7.1, yields the result
that 12 days after the beginning of lockdown, on March 30, 2020, 11% of the
population were already infected, so S = 0.89. This is consistent with the sero-
logical findings of Richardson et al (2020). Thus Ry = R./0.89. Under SEIR,
these Ay values correspond to R = 0.84 [0.83,0.85].

We further estimate the exponential growth rate following the release from
lockdown, Ay, as 0.018 [0.016,0.02]. At release, we find that 18% of the popu-
lation had been infected (broadly consistently with the afore-cited reference) so
S = 0.82 and Ry = 1.36 [1.34,1.37]. This value of Ry generates an effective R,
= 0.82 x Ry = 1.15 leading to a slow increase of the daily death series, as seen
in the data.

In Florida, the exponential growth rate in the first wave A is estimated using
equation (29) between March 17 and April 1, 2020 to be 0.21 with a 95% confi-
dence interval of [0.19,0.23]. In the model, these values correspond to Ry = 2.89
[2.65,3.13]. The exponential decline rate A is estimated between May 5 and
May 28, 2020 to be —0.02 with a 95% confidence interval of [—0.023, —0.016].
This procedure yields the result that only 1.3% of the population were infected,
s0 S = 0.987. Thus R = R./0.987 and so R, = 0.89 [0.88,0.91].

For the second wave in Florida, we estimate the exponential growth rate
Aw between June 18 and August 1, 2020 to be 0.043]0.041, 0.045]. Following the
tirst wave in Florida, we find that 3% of the population had been infected so
S =0.97 and Rw = 1.32[1.30,1.34].

7.2.2 Simulated Policy Strategies

We simulate the model so as to generate a death series comparable to actual
data. This will enable us to see how close the model is to the data. As ini-
tial values we use the ones obtained in step (i) of the procedure elaborated in
sub-section 7.1. In NYS, the solution yields the following values: Ry = 3.21,
Rr = 0.86,Rw = 1.36. In Florida, the solution yields the following values:
Ro =312, R = 0.92, Ry = 1.34. These values, which are very close to the ini-
tial ones, minimize the distance between the actual and simulated death series.
How good is the data fit? Table 5 reports moments of the data series and the
simulated one.

Table 5

By all moments, the simulated and actual series for cumulative deaths (smoothed)
are very close, suggesting a very good fit. This point is important as it shows
that the model is able to reproduce the data.

Next, we simulate the optimal cyclical strategies using the same reproduc-
tion parameter values. Figure 9 shows the outcome using the frontier, in terms
similar to Figure 7; panel a presents NYS and panel b presents Florida. Note
that the optimization was done for the entire two year horizon, as above, but
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Figure 9 presents the cumulative results only for the period from March 1 to
November 30, 2020. As actual state-level employment data from BLS (CES) are
in monthly terms, we adapt the computation to discrete time, monthly terms.
Details are provided in online Appendix B.

Figure 9

The figure shows the outcomes of the cyclical strategies, with k ranging from
0 (optimal lockdown) to 8, the simulated actual experience, and the data. The
last two points are very close as the fit is good. Table 6 presents the values
shown on the figures axes as well as total planner cost, V. Note that in each
panel of the table we present the parameter values relevant for the state in ques-
tion.3?

Table 6

7.3 Discussion

Figure 9 and Table 6 show that the cyclical strategies perform better than actual
experience. The data points lie above the (imaginary, unplotted) frontier. Total
planner discounted cost, in annual GDP terms, goes down from 25% to 12% in
NYS and from 13% to 8% in Florida. Why so?

In New York, the low k cyclical strategies achieve strong containment, re-
sulting in a much lower death rate, and in only a small increase in output loss.
In fact even the high k strategies, which achieve only weak containment, are
better than the actual outcomes. Their death rates are lower or only slightly
higher and output loss is significantly lower. It is clear that actual policy un-
derperformed, and achieved only weak containment. In particular, the use of
moderately stringent k = 5 and k = 6 cyclical tools implies a dramatic reduc-
tion in the death toll and only a slight increase in output costs relative to actual
experience. Timing is key here — the optimal use of k = 5 and k = 6 involves an
immediate initial lockdown, which proves to be critical in curbing the disease
during its exponential growth phase. Compared to this optimal policy, in the
simulated actual experience, waiting with initial lockdown, resulted in death
tolls that are higher by a factor of 45.3! It appears that lockdown in New York
State started relatively late and thus a significant outbreak was facilitated.

In Florida, all cyclical strategies achieve strong containment while the ac-
tual outcome, similar to New York State, is one of weak containment. The gain,

30The fraction of workers in employment in lockdowns in New York State is calibrated to our
baseline US value (0 = 0.65). For Florida, the BLS (CES) employment statistics indicate that
during the period of the ‘stay-at-home’ order (in the month of April 2020), the share was rela-
tively high, at 87%. Additionally, we numerically search for the p value that would generate the
same employment losses in our fatalities-fitting exercise as in the data, and the resulting p is 0.85.
Therefore, we adopt a value p = 0.85 for Florida. As the source data for X we continue to use
Harvard Global Health Institute at https:/ /globalepidemics.org/our-data/hospital-capacity /.

31The importance of early NPIs for curbing cumulative death tolls has been stressed in the
epidemiological literature on the 1918 Influenza Pandemic. Hatchett, Mecher, and Lipsitch (2007)
highlight the fact that the effects of early NPIs may be especially pronounced over short horizons,
but are still significant in terms of overall cumulative mortality.
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relative to actual experience, is similar to the low k case in New York, namely
low death rates with only a slight increase in output loss. With a high fraction
of economic activity maintained during lockdown in Florida, the model implies
that stringent lockdowns should have lasted much longer, suppressing the dis-
ease without dramatic damage to output. The intuition for this result is that
actual release from lockdown in Florida in practice was relatively fast and so
renewed progression of the epidemic was facilitated.>?

Note, too, that the superior outcomes of the cyclical policies are achieved
despite the fact that we constrain the planner in the cases of those policies to
choose only three points in time, while in the real world cases there were fewer
constraints.

8 Conclusions

Given the significant trade-offs between health outcomes (deaths, breaches of
ICU capacity) and economic outcomes (loss of output and employment), the
analysis has shown that pandemic management policy based on time restric-
tions may lead to significant improvement. The improvement was quantified in
terms of social welfare, evaluated in PDV, annual GDP terms. The comparison
was made relative to four hypothetical benchmarks, as well as to the experience
of New York State and Florida. The analysis, which is relevant for COVID19 as
well as for any future epidemic, laid down the principles for time restrictions
policy, as well as a framework for comparative policy analysis.

Exploring this policy seems a promising avenue for future research in the
context of managing epidemics. The analysis clearly shows that such strategies
allow for a nuanced response to observed epidemic dynamics, without resort-
ing to a policy which singles out a particular population group. It is impor-
tant to note that the afore-mentioned advantages of the cyclical strategies over
prevalent policies are likely to be a lower bound of their full benefits. First, in
our model the planner is deliberately constrained in the way cyclical tools are
applied; for example, not permitted to mix within the set of strategies, or apply
them in a staggered way. Giving the planner additional degrees of freedom,
as we do for the benchmark thresholds strategies, should increase the advan-
tages of the novel instruments over prevalent policies. Second, and not less
significant, our model does not allow us to quantify the additional benefits of
cyclical tools, such as the predictability of production that they entail, as well
as their potential to alleviate part of the negative impact of prolonged isolation
on mental well-being.

32This can be seen in panel a of Figure 1.
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